nhaliday + talks   52

The Future of Mathematics? [video] | Hacker News
Kevin Buzzard (the Lean guy)

- general reflection on proof asssistants/theorem provers
- Kevin Hale's formal abstracts project, etc
- thinks of available theorem provers, Lean is "[the only one currently available that may be capable of formalizing all of mathematics eventually]" (goes into more detail right at the end, eg, quotient types)
hn  commentary  discussion  video  talks  presentation  math  formal-methods  expert-experience  msr  frontier  state-of-art  proofs  rigor  education  higher-ed  optimism  prediction  lens  search  meta:research  speculation  exocortex  skunkworks  automation  research  math.NT  big-surf  software  parsimony  cost-benefit  intricacy  correctness  programming  pls  python  functional  haskell  heavyweights  research-program  review  reflection  multi  pdf  slides  oly  experiment  span-cover  git  vcs  teaching  impetus  academia  composition-decomposition  coupling-cohesion  database  trust  types  plt  lifts-projections  induction  critique  beauty  truth  elegance  aesthetics 
5 weeks ago by nhaliday
Use and Interpretation of LD Score Regression
LD Score regression distinguishes confounding from polygenicity in genome-wide association studies: https://sci-hub.bz/10.1038/ng.3211
- Po-Ru Loh, Nick Patterson, et al.


Both polygenicity (i.e. many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield inflated distributions of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from bias and true signal from polygenicity. We have developed an approach that quantifies the contributions of each by examining the relationship between test statistics and linkage disequilibrium (LD). We term this approach LD Score regression. LD Score regression provides an upper bound on the contribution of confounding bias to the observed inflation in test statistics and can be used to estimate a more powerful correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of test statistic inflation in many GWAS of large sample size.

Supplementary Note: https://images.nature.com/original/nature-assets/ng/journal/v47/n3/extref/ng.3211-S1.pdf

An atlas of genetic correlations across human diseases
and traits: https://sci-hub.bz/10.1038/ng.3406


Supplementary Note: https://images.nature.com/original/nature-assets/ng/journal/v47/n11/extref/ng.3406-S1.pdf

ldsc is a command line tool for estimating heritability and genetic correlation from GWAS summary statistics. ldsc also computes LD Scores.
nibble  pdf  slides  talks  bio  biodet  genetics  genomics  GWAS  genetic-correlation  correlation  methodology  bioinformatics  concept  levers  🌞  tutorial  explanation  pop-structure  gene-drift  ideas  multi  study  org:nat  article  repo  software  tools  libraries  stats  hypothesis-testing  biases  confounding  gotchas  QTL  simulation  survey  preprint  population-genetics 
november 2017 by nhaliday
New Theory Cracks Open the Black Box of Deep Learning | Quanta Magazine
A new idea called the “information bottleneck” is helping to explain the puzzling success of today’s artificial-intelligence algorithms — and might also explain how human brains learn.

sounds like he's just talking about autoencoders?
news  org:mag  org:sci  popsci  announcement  research  deep-learning  machine-learning  acm  information-theory  bits  neuro  model-class  big-surf  frontier  nibble  hmm  signal-noise  deepgoog  expert  ideas  wild-ideas  summary  talks  video  israel  roots  physics  interdisciplinary  ai  intelligence  shannon  giants  arrows  preimage  lifts-projections  composition-decomposition  characterization  markov  gradient-descent  papers  liner-notes  experiment  hi-order-bits  generalization  expert-experience  explanans  org:inst  speedometer 
september 2017 by nhaliday
Accurate Genomic Prediction Of Human Height | bioRxiv
Stephen Hsu's compressed sensing application paper

We construct genomic predictors for heritable and extremely complex human quantitative traits (height, heel bone density, and educational attainment) using modern methods in high dimensional statistics (i.e., machine learning). Replication tests show that these predictors capture, respectively, ~40, 20, and 9 percent of total variance for the three traits. For example, predicted heights correlate ~0.65 with actual height; actual heights of most individuals in validation samples are within a few cm of the prediction.


I'm in Mountain View to give a talk at 23andMe. Their latest funding round was $250M on a (reported) valuation of $1.5B. If I just add up the Crunchbase numbers it looks like almost half a billion invested at this point...

Slides: Genomic Prediction of Complex Traits

Here's how people + robots handle your spit sample to produce a SNP genotype:

study  bio  preprint  GWAS  state-of-art  embodied  genetics  genomics  compressed-sensing  high-dimension  machine-learning  missing-heritability  hsu  scitariat  education  🌞  frontier  britain  regression  data  visualization  correlation  phase-transition  multi  commentary  summary  pdf  slides  brands  skunkworks  hard-tech  presentation  talks  methodology  intricacy  bioinformatics  scaling-up  stat-power  sparsity  norms  nibble  speedometer  stats  linear-models  2017  biodet 
september 2017 by nhaliday
Quantum Supremacy: Office of Science and Technology Policy QIS Forum, Eisenhower Executive Office Building, White House Complex, Washington DC, October 18, 2016. Another version at UTCS Faculty Lunch, October 26, 2016. Another version at UT Austin Physics Colloquium, Austin, TX, November 9, 2016.

Complexity-Theoretic Foundations of Quantum Supremacy Experiments: Quantum Algorithms Workshop, Aspen Center for Physics, Aspen, CO, March 25, 2016

When Exactly Do Quantum Computers Provide A Speedup?: Yale Quantum Institute Seminar, Yale University, New Haven, CT, October 10, 2014. Another version at UT Austin Physics Colloquium, Austin, TX, November 19, 2014; Applied and Interdisciplinary Mathematics Seminar, Northeastern University, Boston, MA, November 25, 2014; Hebrew University Physics Colloquium, Jerusalem, Israel, January 5, 2015; Computer Science Colloquium, Technion, Haifa, Israel, January 8, 2015; Stanford University Physics Colloquium, January 27, 2015
tcstariat  aaronson  tcs  complexity  quantum  quantum-info  talks  list  slides  accretion  algorithms  applications  physics  nibble  frontier  computation  volo-avolo  speedometer  questions 
may 2017 by nhaliday
Peter Norvig, the meaning of polynomials, debugging as psychotherapy | Quomodocumque
He briefly showed a demo where, given values of a polynomial, a machine can put together a few lines of code that successfully computes the polynomial. But the code looks weird to a human eye. To compute some quadratic, it nests for-loops and adds things up in a funny way that ends up giving the right output. So has it really ”learned” the polynomial? I think in computer science, you typically feel you’ve learned a function if you can accurately predict its value on a given input. For an algebraist like me, a function determines but isn’t determined by the values it takes; to me, there’s something about that quadratic polynomial the machine has failed to grasp. I don’t think there’s a right or wrong answer here, just a cultural difference to be aware of. Relevant: Norvig’s description of “the two cultures” at the end of this long post on natural language processing (which is interesting all the way through!)
mathtariat  org:bleg  nibble  tech  ai  talks  summary  philosophy  lens  comparison  math  cs  tcs  polynomials  nlp  debugging  psychology  cog-psych  complex-systems  deep-learning  analogy  legibility  interpretability  composition-decomposition  coupling-cohesion  apollonian-dionysian  heavyweights 
march 2017 by nhaliday
Convex Optimization Applications
there was a problem in ACM113 related to this (the portfolio optimization SDP stuff)
pdf  slides  exposition  finance  investing  optimization  methodology  examples  IEEE  acm  ORFE  nibble  curvature  talks  convexity-curvature 
december 2016 by nhaliday

bundles : meta

related tags

aaronson  ability-competence  academia  accretion  acm  acmtariat  advanced  adversarial  advice  aesthetics  ai  ai-control  albion  algebraic-complexity  algorithms  analogy  announcement  apollonian-dionysian  applications  approximation  arrows  article  atoms  automation  bandits  bayesian  beauty  behavioral-gen  ben-recht  berkeley  best-practices  biases  big-picture  big-surf  bio  biodet  bioinformatics  biophysical-econ  bits  boolean-analysis  brands  britain  broad-econ  business  causation  characterization  chicago  class  coding-theory  cog-psych  commentary  comparison  complex-systems  complexity  composition-decomposition  compressed-sensing  computation  computer-vision  concentration-of-measure  concept  conference  confounding  contiguity-proximity  control  convexity-curvature  cool  correctness  correlation  cost-benefit  counting  coupling-cohesion  course  critique  crypto  cs  curvature  data  data-science  data-structures  database  debugging  deep-learning  deep-materialism  deepgoog  devtools  dimensionality  direction  discussion  econometrics  economics  education  elegance  embeddings  embodied  empirical  endo-exo  endogenous-exogenous  enhancement  entanglement  entrepreneurialism  equilibrium  error  essay  estimate  events  evolution  examples  exocortex  experiment  expert  expert-experience  explanans  explanation  exploratory  exposition  extrema  features  fermi  finance  formal-methods  frontier  functional  galor-like  game-theory  gene-drift  generalization  generative  genetic-correlation  genetics  genomics  geometry  giants  git  gnon  gotchas  grad-school  gradient-descent  graph-theory  graphical-models  graphs  grokkability  grokkability-clarity  ground-up  growth-econ  GWAS  GxE  hard-tech  hardness  hashing  haskell  heavyweights  heterodox  hi-order-bits  hierarchy  high-dimension  high-variance  higher-ed  history  hmm  hn  homo-hetero  hsu  human-capital  human-ml  hypothesis-testing  icml  ideas  IEEE  impetus  induction  inequality  information-theory  init  insight  intelligence  interdisciplinary  interpretability  intervention  intricacy  investing  iq  iron-age  isotropy  israel  iterative-methods  journos-pundits  kernels  labor  latent-variables  learning-theory  lectures  legibility  lens  levers  libraries  lifts-projections  linear-algebra  linear-models  linearity  liner-notes  links  list  local-global  longitudinal  lower-bounds  machine-learning  markets  markov  matching  math  math.DS  math.GR  math.MG  math.NT  mathtariat  matrix-factorization  measurement  mechanics  mechanism-design  mediterranean  meta:research  methodology  metric-space  michael-jordan  microfoundations  mihai  miri-cfar  missing-heritability  mit  ML-MAP-E  mobility  model-class  moments  monte-carlo  msr  multi  neuro  news  nibble  nlp  no-go  norms  numerics  obama  off-convex  oly  online-learning  open-problems  openai  optimism  optimization  orders  ORFE  org:bleg  org:edu  org:inst  org:mag  org:nat  org:sci  organization  p:*  p:**  p:whenever  papers  parametric  parsimony  paste  pdf  perturbation  phase-transition  phd  philosophy  phys-energy  physics  pinboard  pls  plt  policy  polynomials  pop-structure  popsci  population-genetics  positivity  prediction  preimage  preprint  presentation  princeton  probability  programming  project  proofs  pseudoE  psychology  publishing  python  qra  QTL  quantum  quantum-info  quantum-money  questions  quixotic  rand-approx  random  ranking  ratty  realness  reduction  reflection  regression  regularizer  replication  repo  research  research-program  review  rigor  rigorous-crypto  risk  robust  roots  rounding  s-factor  s:*  sampling  sapiens  scale  scaling-up  scholar  scholar-pack  science  scitariat  SDP  search  sebastien-bubeck  seminar  sequential  shannon  signal-noise  signum  simulation  skunkworks  slides  social  social-science  software  space  span-cover  sparsity  spatial  speculation  speedometer  stanford  startups  stat-mech  stat-power  state-of-art  stats  stories  stream  study  success  summary  survey  synthesis  systematic-ad-hoc  tails  talks  tcs  tcstariat  teaching  tech  the-classics  the-great-west-whale  the-trenches  thermo  thesis  tightness  tim-roughgarden  time-complexity  time-series  todo  tools  trees  tricks  trust  truth  tutorial  twitter  types  UGC  unit  unsupervised  valiant  vcs  video  visualization  volo-avolo  washington  west-hunter  wigderson  wild-ideas  wonkish  workshop  worrydream  yoga  🌞  🎓  🎩  👳  🔬 

Copy this bookmark: