nhaliday + state   78

REST is the new SOAP | Hacker News
hn  commentary  techtariat  org:ngo  programming  engineering  web  client-server  networking  rant  rhetoric  contrarianism  idk  org:med  best-practices  working-stiff  api  models  protocol-metadata  internet  state  structure  chart  multi  q-n-a  discussion  expert-experience  track-record  reflection  cost-benefit  design  system-design  comparison  code-organizing  flux-stasis  interface-compatibility  trends  gotchas  stackex  state-of-art  distributed  concurrency  abstraction  concept  conceptual-vocab  python  ubiquity  list  top-n  duplication  synchrony  performance  caching 
29 days ago by nhaliday
The Definitive Guide To Website Authentication | Hacker News
hn  commentary  q-n-a  stackex  programming  identification-equivalence  security  web  client-server  crypto  checklists  best-practices  objektbuch  api  multi  cheatsheet  chart  system-design  nitty-gritty  yak-shaving  comparison  explanation  summary  jargon  state  networking  protocol-metadata  time 
5 weeks ago by nhaliday
javascript - ReactJS - Does render get called any time "setState" is called? - Stack Overflow
By default - yes.

There is a method boolean shouldComponentUpdate(object nextProps, object nextState), each component has this method and it's responsible to determine "should component update (run render function)?" every time you change state or pass new props from parent component.

You can write your own implementation of shouldComponentUpdate method for your component, but default implementation always returns true - meaning always re-run render function.

...

Next part of your question:

If so, why? I thought the idea was that React only rendered as little as needed - when state changed.

There are two steps of what we may call "render":

Virtual DOM render: when render method is called it returns a new virtual dom structure of the component. As I mentioned before, this render method is called always when you call setState(), because shouldComponentUpdate always returns true by default. So, by default, there is no optimization here in React.

Native DOM render: React changes real DOM nodes in your browser only if they were changed in the Virtual DOM and as little as needed - this is that great React's feature which optimizes real DOM mutation and makes React fast.
q-n-a  stackex  programming  intricacy  nitty-gritty  abstraction  state  frontend  web  javascript  libraries  facebook  frameworks  explanation  summary  models 
6 weeks ago by nhaliday
Advantages and disadvantages of building a single page web application - Software Engineering Stack Exchange
Advantages
- All data has to be available via some sort of API - this is a big advantage for my use case as I want to have an API to my application anyway. Right now about 60-70% of my calls to get/update data are done through a REST API. Doing a single page application will allow me to better test my REST API since the application itself will use it. It also means that as the application grows, the API itself will grow since that is what the application uses; no need to maintain the API as an add-on to the application.
- More responsive application - since all data loaded after the initial page is kept to a minimum and transmitted in a compact format (like JSON), data requests should generally be faster, and the server will do slightly less processing.

Disadvantages
- Duplication of code - for example, model code. I am going to have to create models both on the server side (PHP in this case) and the client side in Javascript.
- Business logic in Javascript - I can't give any concrete examples on why this would be bad but it just doesn't feel right to me having business logic in Javascript that anyone can read.
- Javascript memory leaks - since the page never reloads, Javascript memory leaks can happen, and I would not even know where to begin to debug them.

--

Disadvantages I often see with Single Page Web Applications:
- Inability to link to a specific part of the site, there's often only 1 entry point.
- Disfunctional back and forward buttons.
- The use of tabs is limited or non-existant.
(especially mobile:)
- Take very long to load.
- Don't function at all.
- Can't reload a page, a sudden loss of network takes you back to the start of the site.

This answer is outdated, Most single page application frameworks have a way to deal with the issues above – Luis May 27 '14 at 1:41
@Luis while the technology is there, too often it isn't used. – Pieter B Jun 12 '14 at 6:53

https://softwareengineering.stackexchange.com/questions/201838/building-a-web-application-that-is-almost-completely-rendered-by-javascript-whi

https://softwareengineering.stackexchange.com/questions/143194/what-advantages-are-conferred-by-using-server-side-page-rendering
Server-side HTML rendering:
- Fastest browser rendering
- Page caching is possible as a quick-and-dirty performance boost
- For "standard" apps, many UI features are pre-built
- Sometimes considered more stable because components are usually subject to compile-time validation
- Leans on backend expertise
- Sometimes faster to develop*
*When UI requirements fit the framework well.

Client-side HTML rendering:
- Lower bandwidth usage
- Slower initial page render. May not even be noticeable in modern desktop browsers. If you need to support IE6-7, or many mobile browsers (mobile webkit is not bad) you may encounter bottlenecks.
- Building API-first means the client can just as easily be an proprietary app, thin client, another web service, etc.
- Leans on JS expertise
- Sometimes faster to develop**
**When the UI is largely custom, with more interesting interactions. Also, I find coding in the browser with interpreted code noticeably speedier than waiting for compiles and server restarts.

https://softwareengineering.stackexchange.com/questions/237537/progressive-enhancement-vs-single-page-apps

https://stackoverflow.com/questions/21862054/single-page-application-advantages-and-disadvantages
=== ADVANTAGES ===
1. SPA is extremely good for very responsive sites:
2. With SPA we don't need to use extra queries to the server to download pages.
3.May be any other advantages? Don't hear about any else..

=== DISADVANTAGES ===
1. Client must enable javascript.
2. Only one entry point to the site.
3. Security.

https://softwareengineering.stackexchange.com/questions/287819/should-you-write-your-back-end-as-an-api
focused on .NET

https://softwareengineering.stackexchange.com/questions/337467/is-it-normal-design-to-completely-decouple-backend-and-frontend-web-applications
A SPA comes with a few issues associated with it. Here are just a few that pop in my mind now:
- it's mostly JavaScript. One error in a section of your application might prevent other sections of the application to work because of that Javascript error.
- CORS.
- SEO.
- separate front-end application means separate projects, deployment pipelines, extra tooling, etc;
- security is harder to do when all the code is on the client;

- completely interact in the front-end with the user and only load data as needed from the server. So better responsiveness and user experience;
- depending on the application, some processing done on the client means you spare the server of those computations.
- have a better flexibility in evolving the back-end and front-end (you can do it separately);
- if your back-end is essentially an API, you can have other clients in front of it like native Android/iPhone applications;
- the separation might make is easier for front-end developers to do CSS/HTML without needing to have a server application running on their machine.

Create your own dysfunctional single-page app: https://news.ycombinator.com/item?id=18341993
I think are three broadly assumed user benefits of single-page apps:
1. Improved user experience.
2. Improved perceived performance.
3. It’s still the web.

5 mistakes to create a dysfunctional single-page app
Mistake 1: Under-estimate long-term development and maintenance costs
Mistake 2: Use the single-page app approach unilaterally
Mistake 3: Under-invest in front end capability
Mistake 4: Use naïve dev practices
Mistake 5: Surf the waves of framework hype

The disadvantages of single page applications: https://news.ycombinator.com/item?id=9879685
You probably don't need a single-page app: https://news.ycombinator.com/item?id=19184496
https://news.ycombinator.com/item?id=20384738
MPA advantages:
- Stateless requests
- The browser knows how to deal with a traditional architecture
- Fewer, more mature tools
- SEO for free

When to go for the single page app:
- Core functionality is real-time (e.g Slack)
- Rich UI interactions are core to the product (e.g Trello)
- Lots of state shared between screens (e.g. Spotify)

Hybrid solutions
...
Github uses this hybrid approach.
...

Ask HN: Is it ok to use traditional server-side rendering these days?: https://news.ycombinator.com/item?id=13212465

https://www.reddit.com/r/webdev/comments/cp9vb8/are_people_still_doing_ssr/
https://www.reddit.com/r/webdev/comments/93n60h/best_javascript_modern_approach_to_multi_page/
https://www.reddit.com/r/webdev/comments/aax4k5/do_you_develop_solely_using_spa_these_days/
The SEO issues with SPAs is a persistent concern you hear about a lot, yet nobody ever quantifies the issues. That is because search engines keep the operation of their crawler bots and indexing secret. I have read into it some, and it seems that problem used to exist, somewhat, but is more or less gone now. Bots can deal with SPAs fine.
--
I try to avoid building a SPA nowadays if possible. Not because of SEO (there are now server-side solutions to help with that), but because a SPA increases the complexity of the code base by a magnitude. State management with Redux... Async this and that... URL routing... And don't forget to manage page history.

How about just render pages with templates and be done?

If I need a highly dynamic UI for a particular feature, then I'd probably build an embeddable JS widget for it.
q-n-a  stackex  programming  engineering  tradeoffs  system-design  design  web  frontend  javascript  cost-benefit  analysis  security  state  performance  traces  measurement  intricacy  code-organizing  applicability-prereqs  multi  comparison  smoothness  shift  critique  techtariat  chart  ui  coupling-cohesion  interface-compatibility  hn  commentary  best-practices  discussion  trends  client-server  api  composition-decomposition  cycles  frameworks  ecosystem  degrees-of-freedom  dotnet  working-stiff  reddit  social 
7 weeks ago by nhaliday
Ask HN: Favorite note-taking software? | Hacker News
Ask HN: What is your ideal note-taking software and/or hardware?: https://news.ycombinator.com/item?id=13221158

my wishlist as of 2019:
- web + desktop macOS + mobile iOS (at least viewing on the last but ideally also editing)
- sync across all those
- open-source data format that's easy to manipulate for scripting purposes
- flexible organization: mostly tree hierarchical (subsuming linear/unorganized) but with the option for directed (acyclic) graph (possibly a second layer of structure/linking)
- can store plain text, LaTeX, diagrams, and raster/vector images (video prob not necessary except as links to elsewhere)
- full-text search
- somehow digest/import data from Pinboard, Workflowy, Papers 3/Bookends, and Skim, ideally absorbing most of their functionality
- so, eg, track notes/annotations side-by-side w/ original PDF/DjVu/ePub documents (to replace Papers3/Bookends/Skim), and maybe web pages too (to replace Pinboard)
- OCR of handwritten notes (how to handle equations/diagrams?)
- various forms of NLP analysis of everything (topic models, clustering, etc)
- maybe version control (less important than export)

candidates?:
- Evernote prob ruled out do to heavy use of proprietary data formats (unless I can find some way to export with tolerably clean output)
- Workflowy/Dynalist are good but only cover a subset of functionality I want
- org-mode doesn't interact w/ mobile well (and I haven't evaluated it in detail otherwise)
- TiddlyWiki/Zim are in the running, but not sure about mobile
- idk about vimwiki but I'm not that wedded to vim and it seems less widely used than org-mode/TiddlyWiki/Zim so prob pass on that
- Quiver/Joplin/Inkdrop look similar and cover a lot of bases, TODO: evaluate more
- Trilium looks especially promising, tho read-only mobile and for macOS desktop look at this: https://github.com/zadam/trilium/issues/511
- RocketBook is interesting scanning/OCR solution but prob not sufficient due to proprietary data format
- TODO: many more candidates, eg, TreeSheets, Gingko, OneNote (macOS?...), Notion (proprietary data format...), Zotero, Nodebook (https://nodebook.io/landing), Polar (https://getpolarized.io), Roam (looks very promising)

Ask HN: What do you use for you personal note taking activity?: https://news.ycombinator.com/item?id=15736102

Ask HN: What are your note-taking techniques?: https://news.ycombinator.com/item?id=9976751

Ask HN: How do you take notes (useful note-taking strategies)?: https://news.ycombinator.com/item?id=13064215

Ask HN: How to get better at taking notes?: https://news.ycombinator.com/item?id=21419478

Ask HN: How did you build up your personal knowledge base?: https://news.ycombinator.com/item?id=21332957
nice comment from math guy on structure and difference between math and CS: https://news.ycombinator.com/item?id=21338628
useful comment collating related discussions: https://news.ycombinator.com/item?id=21333383
highlights:
Designing a Personal Knowledge base: https://news.ycombinator.com/item?id=8270759
Ask HN: How to organize personal knowledge?: https://news.ycombinator.com/item?id=17892731
Do you use a personal 'knowledge base'?: https://news.ycombinator.com/item?id=21108527
Ask HN: How do you share/organize knowledge at work and life?: https://news.ycombinator.com/item?id=21310030

other stuff:
plain text: https://news.ycombinator.com/item?id=21685660

https://www.getdnote.com/blog/how-i-built-personal-knowledge-base-for-myself/
Tiago Forte: https://www.buildingasecondbrain.com

hn search: https://hn.algolia.com/?query=notetaking&type=story

Slant comparison commentary: https://news.ycombinator.com/item?id=7011281

good comparison of options here in comments here (and Trilium itself looks good): https://news.ycombinator.com/item?id=18840990

https://en.wikipedia.org/wiki/Comparison_of_note-taking_software

wikis:
https://www.slant.co/versus/5116/8768/~tiddlywiki_vs_zim
https://www.wikimatrix.org/compare/tiddlywiki+zim
http://tiddlymap.org/
https://www.zim-wiki.org/manual/Plugins/BackLinks_Pane.html
https://zim-wiki.org/manual/Plugins/Link_Map.html

apps:
Roam: https://news.ycombinator.com/item?id=21440289

intriguing but probably not appropriate for my needs: https://www.sophya.ai/

Inkdrop: https://news.ycombinator.com/item?id=20103589

Joplin: https://news.ycombinator.com/item?id=15815040
https://news.ycombinator.com/item?id=21555238

https://wreeto.com/

Leo Editor (combines tree outlining w/ literate programming/scripting, I think?): https://news.ycombinator.com/item?id=17769892

Frame: https://news.ycombinator.com/item?id=18760079

https://www.reddit.com/r/TheMotte/comments/cb18sy/anyone_use_a_personal_wiki_software_to_catalog/
https://archive.is/xViTY
Notion: https://news.ycombinator.com/item?id=18904648

https://www.reddit.com/r/slatestarcodex/comments/ap437v/modified_cornell_method_the_optimal_notetaking/
https://archive.is/e9oHu
https://www.reddit.com/r/slatestarcodex/comments/bt8a1r/im_about_to_start_a_one_month_journaling_test/
https://www.reddit.com/r/slatestarcodex/comments/9cot3m/question_how_do_you_guys_learn_things/
https://archive.is/HUH8V
https://www.reddit.com/r/slatestarcodex/comments/d7bvcp/how_to_read_a_book_for_understanding/
https://archive.is/VL2mi

Anki:
https://www.reddit.com/r/Anki/comments/as8i4t/use_anki_for_technical_books/
https://www.freecodecamp.org/news/how-anki-saved-my-engineering-career-293a90f70a73/
https://www.reddit.com/r/slatestarcodex/comments/ch24q9/anki_is_it_inferior_to_the_3x5_index_card_an/
https://archive.is/OaGc5
maybe not the best source for a review/advice

interesting comment(s) about tree outliners and spreadsheets: https://news.ycombinator.com/item?id=21170434

tablet:
https://www.inkandswitch.com/muse-studio-for-ideas.html
https://www.inkandswitch.com/capstone-manuscript.html
https://news.ycombinator.com/item?id=20255457
hn  discussion  recommendations  software  tools  desktop  app  notetaking  exocortex  wkfly  wiki  productivity  multi  comparison  crosstab  properties  applicability-prereqs  nlp  info-foraging  chart  webapp  reference  q-n-a  retention  workflow  reddit  social  ratty  ssc  learning  studying  commentary  structure  thinking  network-structure  things  collaboration  ocr  trees  graphs  LaTeX  search  todo  project  money-for-time  synchrony  pinboard  state  duplication  worrydream  simplification-normalization  links  minimalism  design  neurons  ai-control  openai  miri-cfar  parsimony  intricacy 
8 weeks ago by nhaliday
Python Tutor - Visualize Python, Java, C, C++, JavaScript, TypeScript, and Ruby code execution
C++ support but not STL

Ten years and nearly ten million users: my experience being a solo maintainer of open-source software in academia: http://www.pgbovine.net/python-tutor-ten-years.htm
I HYPERFOCUS ON ONE SINGLE USE CASE
I (MOSTLY*) DON'T LISTEN TO USER REQUESTS
I (MOSTLY*) REFUSE TO EVEN TALK TO USERS
I DON'T DO ANY MARKETING OR COMMUNITY OUTREACH
I KEEP EVERYTHING STATELESS
I DON'T WORRY ABOUT PERFORMANCE OR RELIABILITY
I USE SUPER OLD AND STABLE TECHNOLOGIES
I DON'T MAKE IT EASY FOR OTHERS TO USE MY CODE
FINALLY, I DON'T LET OTHER PEOPLE CONTRIBUTE CODE
UNINSPIRATIONAL PARTING THOUGHTS
APPENDIX: ON OPEN-SOURCE SOFTWARE MAINTENANCE
tools  devtools  worrydream  ux  hci  research  project  homepage  python  programming  c(pp)  javascript  jvm  visualization  software  internet  web  debugging  techtariat  state  form-design  multi  reflection  oss  shipping  community  collaboration  marketing  ubiquity  robust  worse-is-better/the-right-thing  links  performance  engineering  summary  list  top-n  pragmatic  cynicism-idealism 
september 2019 by nhaliday
A Formal Verification of Rust's Binary Search Implementation
Part of the reason for this is that it’s quite complicated to apply mathematical tools to something unmathematical like a functionally unpure language (which, unfortunately, most programs tend to be written in). In mathematics, you don’t expect a variable to suddenly change its value, and it only gets more complicated when you have pointers to those dang things:

“Dealing with aliasing is one of the key challenges for the verification of imperative programs. For instance, aliases make it difficult to determine which abstractions are potentially affected by a heap update and to determine which locks need to be acquired to avoid data races.” 1

While there are whole logics focused on trying to tackle these problems, a master’s thesis wouldn’t be nearly enough time to model a formal Rust semantics on top of these, so I opted for a more straightforward solution: Simply make Rust a purely functional language!

Electrolysis: Simple Verification of Rust Programs via Functional Purification
If you know a bit about Rust, you may have noticed something about that quote in the previous section: There actually are no data races in (safe) Rust, precisely because there is no mutable aliasing. Either all references to some datum are immutable, or there is a single mutable reference. This means that mutability in Rust is much more localized than in most other imperative languages, and that it is sound to replace a destructive update like

p.x += 1
with a functional one – we know there’s no one else around observing p:

let p = Point { x = p.x + 1, ..p };
techtariat  plt  programming  formal-methods  rust  arrows  reduction  divide-and-conquer  correctness  project  state  functional  concurrency  direct-indirect  pls  examples  simplification-normalization  compilers 
august 2019 by nhaliday
paradigms - What's your strongest opinion against functional programming? - Software Engineering Stack Exchange
The problem is that most common code inherently involves state -- business apps, games, UI, etc. There's no problem with some parts of an app being purely functional; in fact most apps could benefit in at least one area. But forcing the paradigm all over the place feels counter-intuitive.
q-n-a  stackex  programming  engineering  pls  functional  pragmatic  cost-benefit  rhetoric  debate  steel-man  business  regularizer  abstraction  state  realness 
june 2019 by nhaliday
c++ - Constexpr Math Functions - Stack Overflow
Actually, because of old and annoying legacy, almost none of the math functions can be constexpr, since they all have the side-effect of setting errno on various error conditions, usually domain errors.
--
Note, gcc has implemented most of the math function as constexpr although the extension is non-conforming this should change. So definitely doable. – Shafik Yaghmour Jan 12 '15 at 20:2
q-n-a  stackex  programming  pls  c(pp)  gotchas  legacy  numerics  state  resources-effects  gnu 
june 2019 by nhaliday
C++ Core Guidelines
This document is a set of guidelines for using C++ well. The aim of this document is to help people to use modern C++ effectively. By “modern C++” we mean effective use of the ISO C++ standard (currently C++17, but almost all of our recommendations also apply to C++14 and C++11). In other words, what would you like your code to look like in 5 years’ time, given that you can start now? In 10 years’ time?

https://isocpp.github.io/CppCoreGuidelines/
“Within C++ is a smaller, simpler, safer language struggling to get out.” – Bjarne Stroustrup

...

The guidelines are focused on relatively higher-level issues, such as interfaces, resource management, memory management, and concurrency. Such rules affect application architecture and library design. Following the rules will lead to code that is statically type safe, has no resource leaks, and catches many more programming logic errors than is common in code today. And it will run fast - you can afford to do things right.

We are less concerned with low-level issues, such as naming conventions and indentation style. However, no topic that can help a programmer is out of bounds.

Our initial set of rules emphasize safety (of various forms) and simplicity. They may very well be too strict. We expect to have to introduce more exceptions to better accommodate real-world needs. We also need more rules.

...

The rules are designed to be supported by an analysis tool. Violations of rules will be flagged with references (or links) to the relevant rule. We do not expect you to memorize all the rules before trying to write code.

contrary:
https://aras-p.info/blog/2018/12/28/Modern-C-Lamentations/
This will be a long wall of text, and kinda random! My main points are:
1. C++ compile times are important,
2. Non-optimized build performance is important,
3. Cognitive load is important. I don’t expand much on this here, but if a programming language or a library makes me feel stupid, then I’m less likely to use it or like it. C++ does that a lot :)
programming  engineering  pls  best-practices  systems  c(pp)  guide  metabuch  objektbuch  reference  cheatsheet  elegance  frontier  libraries  intricacy  advanced  advice  recommendations  big-picture  novelty  lens  philosophy  state  error  types  concurrency  memory-management  performance  abstraction  plt  compilers  expert-experience  multi  checking  devtools  flux-stasis  safety  system-design  techtariat  time  measure  dotnet  comparison  examples  build-packaging  thinking  worse-is-better/the-right-thing  cost-benefit  tradeoffs  essay  commentary  oop  correctness  computer-memory  error-handling  resources-effects  latency-throughput 
june 2019 by nhaliday
Frama-C
Frama-C is organized with a plug-in architecture (comparable to that of the Gimp or Eclipse). A common kernel centralizes information and conducts the analysis. Plug-ins interact with each other through interfaces defined by the kernel. This makes for robustness in the development of Frama-C while allowing a wide functionality spectrum.

...

Three heavyweight plug-ins that are used by the other plug-ins:

- Eva (Evolved Value analysis)
This plug-in computes variation domains for variables. It is quite automatic, although the user may guide the analysis in places. It handles a wide spectrum of C constructs. This plug-in uses abstract interpretation techniques.
- Jessie and Wp, two deductive verification plug-ins
These plug-ins are based on weakest precondition computation techniques. They allow to prove that C functions satisfy their specification as expressed in ACSL. These proofs are modular: the specifications of the called functions are used to establish the proof without looking at their code.

For browsing unfamiliar code:
- Impact analysis
This plug-in highlights the locations in the source code that are impacted by a modification.
- Scope & Data-flow browsing
This plug-in allows the user to navigate the dataflow of the program, from definition to use or from use to definition.
- Variable occurrence browsing
Also provided as a simple example for new plug-in development, this plug-in allows the user to reach the statements where a given variable is used.
- Metrics calculation
This plug-in allows the user to compute various metrics from the source code.

For code transformation:
- Semantic constant folding
This plug-in makes use of the results of the evolved value analysis plug-in to replace, in the source code, the constant expressions by their values. Because it relies on EVA, it is able to do more of these simplifications than a syntactic analysis would.
- Slicing
This plug-in slices the code according to a user-provided criterion: it creates a copy of the program, but keeps only those parts which are necessary with respect to the given criterion.
- Spare code: remove "spare code", code that does not contribute to the final results of the program.
- E-ACSL: translate annotations into C code for runtime assertion checking.
For verifying functional specifications:

- Aoraï: verify specifications expressed as LTL (Linear Temporal Logic) formulas
Other functionalities documented together with the EVA plug-in can be considered as verifying low-level functional specifications (inputs, outputs, dependencies,…)
For test-case generation:

- PathCrawler automatically finds test-case inputs to ensure coverage of a C function. It can be used for structural unit testing, as a complement to static analysis or to study the feasible execution paths of the function.
For concurrent programs:

- Mthread
This plug-in automatically analyzes concurrent C programs, using the EVA plug-in, taking into account all possible thread interactions. At the end of its execution, the concurrent behavior of each thread is over-approximated, resulting in precise information about shared variables, which mutex protects a part of the code, etc.
Front-end for other languages

- Frama-Clang
This plug-in provides a C++ front-end to Frama-C, based on the clang compiler. It transforms C++ code into a Frama-C AST, which can then be analyzed by the plug-ins above. Note however that it is very experimental and only supports a subset of C++11
tools  devtools  formal-methods  programming  software  c(pp)  systems  memory-management  ocaml-sml  debugging  checking  rigor  oss  code-dive  graphs  state  metrics  llvm  gallic  cool  worrydream  impact  flux-stasis  correctness  computer-memory  structure  static-dynamic 
may 2019 by nhaliday
Should I go for TensorFlow or PyTorch?
Honestly, most experts that I know love Pytorch and detest TensorFlow. Karpathy and Justin from Stanford for example. You can see Karpthy's thoughts and I've asked Justin personally and the answer was sharp: PYTORCH!!! TF has lots of PR but its API and graph model are horrible and will waste lots of your research time.

--

...

Updated Mar 12
Update after 2019 TF summit:

TL/DR: previously I was in the pytorch camp but with TF 2.0 it’s clear that Google is really going to try to have parity or try to be better than Pytorch in all aspects where people voiced concerns (ease of use/debugging/dynamic graphs). They seem to be allocating more resources on development than Facebook so the longer term currently looks promising for Google. Prior to TF 2.0 I thought that Pytorch team had more momentum. One area where FB/Pytorch is still stronger is Google is a bit more closed and doesn’t seem to release reproducible cutting edge models such as AlphaGo whereas FAIR released OpenGo for instance. Generally you will end up running into models that are only implemented in one framework of the other so chances are you might end up learning both.
q-n-a  qra  comparison  software  recommendations  cost-benefit  tradeoffs  python  libraries  machine-learning  deep-learning  data-science  sci-comp  tools  google  facebook  tech  competition  best-practices  trends  debugging  expert-experience  ecosystem  theory-practice  pragmatic  wire-guided  static-dynamic  state  academia  frameworks  open-closed 
may 2019 by nhaliday
One week of bugs
If I had to guess, I'd say I probably work around hundreds of bugs in an average week, and thousands in a bad week. It's not unusual for me to run into a hundred new bugs in a single week. But I often get skepticism when I mention that I run into multiple new (to me) bugs per day, and that this is inevitable if we don't change how we write tests. Well, here's a log of one week of bugs, limited to bugs that were new to me that week. After a brief description of the bugs, I'll talk about what we can do to improve the situation. The obvious answer to spend more effort on testing, but everyone already knows we should do that and no one does it. That doesn't mean it's hopeless, though.

...

Here's where I'm supposed to write an appeal to take testing more seriously and put real effort into it. But we all know that's not going to work. It would take 90k LOC of tests to get Julia to be as well tested as a poorly tested prototype (falsely assuming linear complexity in size). That's two person-years of work, not even including time to debug and fix bugs (which probably brings it closer to four of five years). Who's going to do that? No one. Writing tests is like writing documentation. Everyone already knows you should do it. Telling people they should do it adds zero information1.

Given that people aren't going to put any effort into testing, what's the best way to do it?

Property-based testing. Generative testing. Random testing. Concolic Testing (which was done long before the term was coined). Static analysis. Fuzzing. Statistical bug finding. There are lots of options. Some of them are actually the same thing because the terminology we use is inconsistent and buggy. I'm going to arbitrarily pick one to talk about, but they're all worth looking into.

...

There are a lot of great resources out there, but if you're just getting started, I found this description of types of fuzzers to be one of those most helpful (and simplest) things I've read.

John Regehr has a udacity course on software testing. I haven't worked through it yet (Pablo Torres just pointed to it), but given the quality of Dr. Regehr's writing, I expect the course to be good.

For more on my perspective on testing, there's this.

Everything's broken and nobody's upset: https://www.hanselman.com/blog/EverythingsBrokenAndNobodysUpset.aspx
https://news.ycombinator.com/item?id=4531549

https://hypothesis.works/articles/the-purpose-of-hypothesis/
From the perspective of a user, the purpose of Hypothesis is to make it easier for you to write better tests.

From my perspective as the primary author, that is of course also a purpose of Hypothesis. I write a lot of code, it needs testing, and the idea of trying to do that without Hypothesis has become nearly unthinkable.

But, on a large scale, the true purpose of Hypothesis is to drag the world kicking and screaming into a new and terrifying age of high quality software.

Software is everywhere. We have built a civilization on it, and it’s only getting more prevalent as more services move online and embedded and “internet of things” devices become cheaper and more common.

Software is also terrible. It’s buggy, it’s insecure, and it’s rarely well thought out.

This combination is clearly a recipe for disaster.

The state of software testing is even worse. It’s uncontroversial at this point that you should be testing your code, but it’s a rare codebase whose authors could honestly claim that they feel its testing is sufficient.

Much of the problem here is that it’s too hard to write good tests. Tests take up a vast quantity of development time, but they mostly just laboriously encode exactly the same assumptions and fallacies that the authors had when they wrote the code, so they miss exactly the same bugs that you missed when they wrote the code.

Preventing the Collapse of Civilization [video]: https://news.ycombinator.com/item?id=19945452
- Jonathan Blow

NB: DevGAMM is a game industry conference

- loss of technological knowledge (Antikythera mechanism, aqueducts, etc.)
- hardware driving most gains, not software
- software's actually less robust, often poorly designed and overengineered these days
- *list of bugs he's encountered recently*:
https://youtu.be/pW-SOdj4Kkk?t=1387
- knowledge of trivia becomes more than general, deep knowledge
- does at least acknowledge value of DRY, reusing code, abstraction saving dev time
techtariat  dan-luu  tech  software  error  list  debugging  linux  github  robust  checking  oss  troll  lol  aphorism  webapp  email  google  facebook  games  julia  pls  compilers  communication  mooc  browser  rust  programming  engineering  random  jargon  formal-methods  expert-experience  prof  c(pp)  course  correctness  hn  commentary  video  presentation  carmack  pragmatic  contrarianism  pessimism  sv  unix  rhetoric  critique  worrydream  hardware  performance  trends  multiplicative  roots  impact  comparison  history  iron-age  the-classics  mediterranean  conquest-empire  gibbon  technology  the-world-is-just-atoms  flux-stasis  increase-decrease  graphics  hmm  idk  systems  os  abstraction  intricacy  worse-is-better/the-right-thing  build-packaging  microsoft  osx  apple  reflection  assembly  things  knowledge  detail-architecture  thick-thin  trivia  info-dynamics  caching  frameworks  generalization  systematic-ad-hoc  universalism-particularism  analytical-holistic  structure  tainter  libraries  tradeoffs  prepping  threat-modeling  network-structure  writing  risk  local-glob 
may 2019 by nhaliday
Burrito: Rethinking the Electronic Lab Notebook
Seems very well-suited for ML experiments (if you can get it to work), also the nilfs aspect is cool and basically implements exactly one of the my project ideas (mini-VCS for competitive programming). Unfortunately gnarly installation instructions specify running it on Linux VM: https://github.com/pgbovine/burrito/blob/master/INSTALL. Linux is hard requirement due to nilfs.
techtariat  project  tools  devtools  linux  programming  yak-shaving  integration-extension  nitty-gritty  workflow  exocortex  scholar  software  python  app  desktop  notetaking  state  machine-learning  data-science  nibble  sci-comp  oly  vcs  multi  repo  paste  homepage  research 
may 2019 by nhaliday
Why is reverse debugging rarely used? - Software Engineering Stack Exchange
(time travel)

For one, running in debug mode with recording on is very expensive compared to even normal debug mode; it also consumes a lot more memory.

It is easier to decrease the granularity from line level to function call level. For example, the standard debugger in eclipse allows you to "drop to frame," which is essentially a jump back to the start of the function with a reset of all the parameters (nothing done on the heap is reverted, and finally blocks are not executed, so it is not a true reverse debugger; be careful about that).

Note that this has been available for several years now and works hand in hand with hot-code replacement.
--
As mentioned already, performance is key e.g. with gdb's reversible debugging, running something like gzip sees a slowdown of 50,000x compared to running natively. There are commercial alternatives however: I work for Undo undo.io, and our UndoDB product does the same but with a slowdown of less than 2x. There are other commercial reversible debuggers available too.

https://undo.io
Based on GDB, UndoDB supports source-level debugging for applications written in any language supported by GDB, including C/C++, Rust and Ada.
q-n-a  stackex  programming  engineering  impetus  debugging  time  increase-decrease  worrydream  hci  devtools  direction  roots  money-for-time  review  comparison  critique  tools  software  multi  systems  c(pp)  rust  state 
may 2019 by nhaliday
Teach debugging
A friend of mine and I couldn't understand why some people were having so much trouble; the material seemed like common sense. The Feynman Method was the only tool we needed.

1. Write down the problem
2. Think real hard
3. Write down the solution

The Feynman Method failed us on the last project: the design of a divider, a real-world-scale project an order of magnitude more complex than anything we'd been asked to tackle before. On the day he assigned the project, the professor exhorted us to begin early. Over the next few weeks, we heard rumors that some of our classmates worked day and night without making progress.

...

And then, just after midnight, a number of our newfound buddies from dinner reported successes. Half of those who started from scratch had working designs. Others were despondent, because their design was still broken in some subtle, non-obvious way. As I talked with one of those students, I began poring over his design. And after a few minutes, I realized that the Feynman method wasn't the only way forward: it should be possible to systematically apply a mechanical technique repeatedly to find the source of our problems. Beneath all the abstractions, our projects consisted purely of NAND gates (woe to those who dug around our toolbox enough to uncover dynamic logic), which outputs a 0 only when both inputs are 1. If the correct output is 0, both inputs should be 1. The input that isn't is in error, an error that is, itself, the output of a NAND gate where at least one input is 0 when it should be 1. We applied this method recursively, finding the source of all the problems in both our designs in under half an hour.

How To Debug Any Program: https://www.blinddata.com/blog/how-to-debug-any-program-9
May 8th 2019 by Saketh Are

Start by Questioning Everything

...

When a program is behaving unexpectedly, our attention tends to be drawn first to the most complex portions of the code. However, mistakes can come in all forms. I've personally been guilty of rushing to debug sophisticated portions of my code when the real bug was that I forgot to read in the input file. In the following section, we'll discuss how to reliably focus our attention on the portions of the program that need correction.

Then Question as Little as Possible

Suppose that we have a program and some input on which its behavior doesn’t match our expectations. The goal of debugging is to narrow our focus to as small a section of the program as possible. Once our area of interest is small enough, the value of the incorrect output that is being produced will typically tell us exactly what the bug is.

In order to catch the point at which our program diverges from expected behavior, we must inspect the intermediate state of the program. Suppose that we select some point during execution of the program and print out all values in memory. We can inspect the results manually and decide whether they match our expectations. If they don't, we know for a fact that we can focus on the first half of the program. It either contains a bug, or our expectations of what it should produce were misguided. If the intermediate state does match our expectations, we can focus on the second half of the program. It either contains a bug, or our understanding of what input it expects was incorrect.

Question Things Efficiently

For practical purposes, inspecting intermediate state usually doesn't involve a complete memory dump. We'll typically print a small number of variables and check whether they have the properties we expect of them. Verifying the behavior of a section of code involves:

1. Before it runs, inspecting all values in memory that may influence its behavior.
2. Reasoning about the expected behavior of the code.
3. After it runs, inspecting all values in memory that may be modified by the code.

Reasoning about expected behavior is typically the easiest step to perform even in the case of highly complex programs. Practically speaking, it's time-consuming and mentally strenuous to write debug output into your program and to read and decipher the resulting values. It is therefore advantageous to structure your code into functions and sections that pass a relatively small amount of information between themselves, minimizing the number of values you need to inspect.

...

Finding the Right Question to Ask

We’ve assumed so far that we have available a test case on which our program behaves unexpectedly. Sometimes, getting to that point can be half the battle. There are a few different approaches to finding a test case on which our program fails. It is reasonable to attempt them in the following order:

1. Verify correctness on the sample inputs.
2. Test additional small cases generated by hand.
3. Adversarially construct corner cases by hand.
4. Re-read the problem to verify understanding of input constraints.
5. Design large cases by hand and write a program to construct them.
6. Write a generator to construct large random cases and a brute force oracle to verify outputs.
techtariat  dan-luu  engineering  programming  debugging  IEEE  reflection  stories  education  higher-ed  checklists  iteration-recursion  divide-and-conquer  thinking  ground-up  nitty-gritty  giants  feynman  error  input-output  structure  composition-decomposition  abstraction  systematic-ad-hoc  reduction  teaching  state  correctness  multi  oly  oly-programming  metabuch  neurons  problem-solving  wire-guided  marginal  strategy  tactics  methodology  simplification-normalization 
may 2019 by nhaliday
If there are 3 space dimensions and one time dimension, is it theoretically possible to have multiple time demensions and if so how would it work? : askscience
Yes, we can consider spacetimes with any number of temporal or spatial dimensions. The theory is set up essentially the same. Spacetime is modeled as a smooth n-dimensional manifold with a pseudo-Riemannian metric, and the metric satisfies the Einstein field equations (Einstein tensor = stress tensor).
A pseudo-Riemannian tensor is characterized by its signature, i.e., the number of negative quadratic forms in its metric and the number of positive quadratic forms. The coordinates with negative forms correspond to temporal dimensions. (This is a convention that is fixed from the start.) In general relativity, spacetime is 4-dimensional, and the signature is (1,3), so there is 1 temporal dimension and 3 spatial dimensions.
Okay, so that's a lot of math, but it all basically means that, yes, it makes sense to ask questions like "what does a universe with 2 time dimensions and 3 spatial dimensions look like?" It turns out that spacetimes with more than 1 temporal dimension are very pathological. For one, initial value problems do not generally have unique solutions. There is also generally no canonical way to pick out 1 of the infinitely many solutions to the equations of physics. This means that predictability is impossible (e.g., how do you know which solution is the correct one?). Essentially, there is no meaningful physics in a spacetime with more than 1 temporal dimension.
q-n-a  reddit  social  discussion  trivia  math  physics  relativity  curiosity  state  dimensionality  differential  geometry  gedanken  volo-avolo 
june 2017 by nhaliday
Edge.org: 2017 : WHAT SCIENTIFIC TERM OR CONCEPT OUGHT TO BE MORE WIDELY KNOWN?
highlights:
- the genetic book of the dead [Dawkins]
- complementarity [Frank Wilczek]
- relative information
- effective theory [Lisa Randall]
- affordances [Dennett]
- spontaneous symmetry breaking
- relatedly, equipoise [Nicholas Christakis]
- case-based reasoning
- population reasoning (eg, common law)
- criticality [Cesar Hidalgo]
- Haldan's law of the right size (!SCALE!)
- polygenic scores
- non-ergodic
- ansatz
- state [Aaronson]: http://www.scottaaronson.com/blog/?p=3075
- transfer learning
- effect size
- satisficing
- scaling
- the breeder's equation [Greg Cochran]
- impedance matching

soft:
- reciprocal altruism
- life history [Plomin]
- intellectual honesty [Sam Harris]
- coalitional instinct (interesting claim: building coalitions around "rationality" actually makes it more difficult to update on new evidence as it makes you look like a bad person, eg, the Cathedral)
basically same: https://twitter.com/ortoiseortoise/status/903682354367143936

more: https://www.edge.org/conversation/john_tooby-coalitional-instincts

interesting timing. how woke is this dude?
org:edge  2017  technology  discussion  trends  list  expert  science  top-n  frontier  multi  big-picture  links  the-world-is-just-atoms  metameta  🔬  scitariat  conceptual-vocab  coalitions  q-n-a  psychology  social-psych  anthropology  instinct  coordination  duty  power  status  info-dynamics  cultural-dynamics  being-right  realness  cooperate-defect  westminster  chart  zeitgeist  rot  roots  epistemic  rationality  meta:science  analogy  physics  electromag  geoengineering  environment  atmosphere  climate-change  waves  information-theory  bits  marginal  quantum  metabuch  homo-hetero  thinking  sapiens  genetics  genomics  evolution  bio  GT-101  low-hanging  minimum-viable  dennett  philosophy  cog-psych  neurons  symmetry  humility  life-history  social-structure  GWAS  behavioral-gen  biodet  missing-heritability  ergodic  machine-learning  generalization  west-hunter  population-genetics  methodology  blowhards  spearhead  group-level  scale  magnitude  business  scaling-tech  tech  business-models  optimization  effect-size  aaronson  state  bare-hands  problem-solving  politics 
may 2017 by nhaliday
chemistry - Is it possible to make an alloy that melts at low temperatures and solidifies at high temperatures? - Worldbuilding Stack Exchange
I'm sure this is outside of the range of temperatures you were interested in, but in the spirit of "truth is stranger than fiction," Helium-3 actually does this.
nibble  q-n-a  stackex  trivia  chemistry  physics  thermo  state  temperature  weird  phase-transition 
may 2017 by nhaliday
Einstein's Most Famous Thought Experiment
When Einstein abandoned an emission theory of light, he had also to abandon the hope that electrodynamics could be made to conform to the principle of relativity by the normal sorts of modifications to electrodynamic theory that occupied the theorists of the second half of the 19th century. Instead Einstein knew he must resort to extraordinary measures. He was willing to seek realization of his goal in a re-examination of our basic notions of space and time. Einstein concluded his report on his youthful thought experiment:

"One sees that in this paradox the germ of the special relativity theory is already contained. Today everyone knows, of course, that all attempts to clarify this paradox satisfactorily were condemned to failure as long as the axiom of the absolute character of time, or of simultaneity, was rooted unrecognized in the unconscious. To recognize clearly this axiom and its arbitrary character already implies the essentials of the solution of the problem."
einstein  giants  physics  history  stories  gedanken  exposition  org:edu  electromag  relativity  nibble  innovation  novelty  the-trenches  synchrony  discovery  🔬  org:junk  science  absolute-relative  visuo  explanation  ground-up  clarity  state  causation  intuition  ideas  mostly-modern  pre-ww2  marginal  grokkability-clarity 
february 2017 by nhaliday
the-perfect-bug-report
Reproducing bugs is awful. You get an issue like “Problem with Sidebar” that vaguely describes some odd behavior. Now you must somehow reproduce it exactly. Was it the specific timing of events? Was it bad data from the server? Was it specific to a certain user? Was it a recently updated dependency? As you slog through all these possibilities, the most annoying thing is that the person who opened the bug report already had all this information! In an ideal world, you could just replay their exact session.

Elm 0.18 lets you do exactly that! In debug mode, Elm lets you import and export the exact sequence of events from a program. You get all the information necessary to reproduce the session exactly, from mouse clicks to HTTP requests.
worrydream  functional  pls  announcement  debugging  frontend  web  javascript  time  traces  sequential  roots  explanans  replication  duplication  live-coding  state  direction 
november 2016 by nhaliday
Rob Pike: Notes on Programming in C
Issues of typography
...
Sometimes they care too much: pretty printers mechanically produce pretty output that accentuates irrelevant detail in the program, which is as sensible as putting all the prepositions in English text in bold font. Although many people think programs should look like the Algol-68 report (and some systems even require you to edit programs in that style), a clear program is not made any clearer by such presentation, and a bad program is only made laughable.
Typographic conventions consistently held are important to clear presentation, of course - indentation is probably the best known and most useful example - but when the ink obscures the intent, typography has taken over.

...

Naming
...
Finally, I prefer minimum-length but maximum-information names, and then let the context fill in the rest. Globals, for instance, typically have little context when they are used, so their names need to be relatively evocative. Thus I say maxphysaddr (not MaximumPhysicalAddress) for a global variable, but np not NodePointer for a pointer locally defined and used. This is largely a matter of taste, but taste is relevant to clarity.

...

Pointers
C is unusual in that it allows pointers to point to anything. Pointers are sharp tools, and like any such tool, used well they can be delightfully productive, but used badly they can do great damage (I sunk a wood chisel into my thumb a few days before writing this). Pointers have a bad reputation in academia, because they are considered too dangerous, dirty somehow. But I think they are powerful notation, which means they can help us express ourselves clearly.
Consider: When you have a pointer to an object, it is a name for exactly that object and no other.

...

Comments
A delicate matter, requiring taste and judgement. I tend to err on the side of eliminating comments, for several reasons. First, if the code is clear, and uses good type names and variable names, it should explain itself. Second, comments aren't checked by the compiler, so there is no guarantee they're right, especially after the code is modified. A misleading comment can be very confusing. Third, the issue of typography: comments clutter code.
But I do comment sometimes. Almost exclusively, I use them as an introduction to what follows.

...

Complexity
Most programs are too complicated - that is, more complex than they need to be to solve their problems efficiently. Why? Mostly it's because of bad design, but I will skip that issue here because it's a big one. But programs are often complicated at the microscopic level, and that is something I can address here.
Rule 1. You can't tell where a program is going to spend its time. Bottlenecks occur in surprising places, so don't try to second guess and put in a speed hack until you've proven that's where the bottleneck is.

Rule 2. Measure. Don't tune for speed until you've measured, and even then don't unless one part of the code overwhelms the rest.

Rule 3. Fancy algorithms are slow when n is small, and n is usually small. Fancy algorithms have big constants. Until you know that n is frequently going to be big, don't get fancy. (Even if n does get big, use Rule 2 first.) For example, binary trees are always faster than splay trees for workaday problems.

Rule 4. Fancy algorithms are buggier than simple ones, and they're much harder to implement. Use simple algorithms as well as simple data structures.

The following data structures are a complete list for almost all practical programs:

array
linked list
hash table
binary tree
Of course, you must also be prepared to collect these into compound data structures. For instance, a symbol table might be implemented as a hash table containing linked lists of arrays of characters.
Rule 5. Data dominates. If you've chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming. (See The Mythical Man-Month: Essays on Software Engineering by F. P. Brooks, page 102.)

Rule 6. There is no Rule 6.

Programming with data.
...
One of the reasons data-driven programs are not common, at least among beginners, is the tyranny of Pascal. Pascal, like its creator, believes firmly in the separation of code and data. It therefore (at least in its original form) has no ability to create initialized data. This flies in the face of the theories of Turing and von Neumann, which define the basic principles of the stored-program computer. Code and data are the same, or at least they can be. How else can you explain how a compiler works? (Functional languages have a similar problem with I/O.)

Function pointers
Another result of the tyranny of Pascal is that beginners don't use function pointers. (You can't have function-valued variables in Pascal.) Using function pointers to encode complexity has some interesting properties.
Some of the complexity is passed to the routine pointed to. The routine must obey some standard protocol - it's one of a set of routines invoked identically - but beyond that, what it does is its business alone. The complexity is distributed.

There is this idea of a protocol, in that all functions used similarly must behave similarly. This makes for easy documentation, testing, growth and even making the program run distributed over a network - the protocol can be encoded as remote procedure calls.

I argue that clear use of function pointers is the heart of object-oriented programming. Given a set of operations you want to perform on data, and a set of data types you want to respond to those operations, the easiest way to put the program together is with a group of function pointers for each type. This, in a nutshell, defines class and method. The O-O languages give you more of course - prettier syntax, derived types and so on - but conceptually they provide little extra.

...

Include files
Simple rule: include files should never include include files. If instead they state (in comments or implicitly) what files they need to have included first, the problem of deciding which files to include is pushed to the user (programmer) but in a way that's easy to handle and that, by construction, avoids multiple inclusions. Multiple inclusions are a bane of systems programming. It's not rare to have files included five or more times to compile a single C source file. The Unix /usr/include/sys stuff is terrible this way.
There's a little dance involving #ifdef's that can prevent a file being read twice, but it's usually done wrong in practice - the #ifdef's are in the file itself, not the file that includes it. The result is often thousands of needless lines of code passing through the lexical analyzer, which is (in good compilers) the most expensive phase.

Just follow the simple rule.

cf https://stackoverflow.com/questions/1101267/where-does-the-compiler-spend-most-of-its-time-during-parsing
First, I don't think it actually is true: in many compilers, most time is not spend in lexing source code. For example, in C++ compilers (e.g. g++), most time is spend in semantic analysis, in particular in overload resolution (trying to find out what implicit template instantiations to perform). Also, in C and C++, most time is often spend in optimization (creating graph representations of individual functions or the whole translation unit, and then running long algorithms on these graphs).

When comparing lexical and syntactical analysis, it may indeed be the case that lexical analysis is more expensive. This is because both use state machines, i.e. there is a fixed number of actions per element, but the number of elements is much larger in lexical analysis (characters) than in syntactical analysis (tokens).

https://news.ycombinator.com/item?id=7728207
programming  systems  philosophy  c(pp)  summer-2014  intricacy  engineering  rhetoric  contrarianism  diogenes  parsimony  worse-is-better/the-right-thing  data-structures  list  algorithms  stylized-facts  essay  ideas  performance  functional  state  pls  oop  gotchas  blowhards  duplication  compilers  syntax  lexical  checklists  metabuch  lens  notation  thinking  neurons  guide  pareto  heuristic  time  cost-benefit  multi  q-n-a  stackex  plt  hn  commentary  minimalism  techtariat  rsc  writing  technical-writing  cracker-prog  code-organizing  grokkability  protocol-metadata  direct-indirect  grokkability-clarity  latency-throughput 
august 2014 by nhaliday

bundles : abstractphysicstcs

related tags

2016-election  aaronson  absolute-relative  abstraction  academia  acmtariat  advanced  adversarial  advice  ai  ai-control  algorithms  allodium  altruism  amortization-potential  analogy  analysis  analytical-holistic  announcement  anthropology  aphorism  api  app  apple  applicability-prereqs  approximation  arrows  asia  assembly  atmosphere  atoms  aversion  axelrod  backup  bare-hands  behavioral-gen  being-right  best-practices  big-picture  bio  biodet  bits  blowhards  books  britain  browser  build-packaging  business  business-models  c(pp)  caching  canon  career  carmack  causation  characterization  chart  cheatsheet  checking  checklists  chemistry  christianity  civilization  clarity  client-server  climate-change  cloud  coalitions  code-dive  code-organizing  cog-psych  cohesion  collaboration  commentary  communication  community  comparison  compensation  competition  compilers  complement-substitute  complex-systems  composition-decomposition  computation  computer-memory  concept  conceptual-vocab  concurrency  confusion  conquest-empire  constraint-satisfaction  contradiction  contrarianism  cool  cooperate-defect  coordination  correctness  correlation  cost-benefit  counter-revolution  coupling-cohesion  course  cracker-prog  creative  critique  crosstab  crypto  cs  cultural-dynamics  culture-war  curiosity  cycles  cynicism-idealism  d3  dan-luu  darwinian  data  data-science  data-structures  database  dataviz  dbs  debate  debugging  deep-learning  definition  degrees-of-freedom  democracy  demographics  dennett  density  design  desktop  detail-architecture  devtools  differential  dimensionality  diogenes  direct-indirect  direction  discovery  discussion  distributed  distribution  diversity  divide-and-conquer  documentation  dotnet  DSL  duality  duplication  duty  dynamic  ecosystem  editors  education  effect-size  egalitarianism-hierarchy  eh  einstein  electromag  elegance  email  embedded-cognition  emergent  empirical  ends-means  engineering  entanglement  environment  epistemic  ergodic  erik-demaine  erlang  error  error-handling  essay  europe  evidence-based  evolution  examples  exocortex  experiment  expert  expert-experience  explanans  explanation  exploratory  exposition  facebook  fashun  feynman  fluid  flux-stasis  form-design  formal-methods  frameworks  free  frontend  frontier  functional  gallic  games  gedanken  gender  generalization  genetics  genomics  geoengineering  geometry  giants  gibbon  github  gnosis-logos  gnu  google  gotchas  government  gradient-descent  graph-theory  graphics  graphs  greedy  grokkability  grokkability-clarity  ground-up  group-level  GT-101  guide  GWAS  happy-sad  hardware  hashing  haskell  hci  heavyweights  heuristic  hi-order-bits  hidden-motives  higher-ed  history  hmm  hn  homepage  homo-hetero  howto  hsu  human-capital  humility  ide  ideas  identification-equivalence  identity  identity-politics  ideology  idk  IEEE  illusion  impact  impetus  incentives  increase-decrease  info-dynamics  info-foraging  information-theory  init  innovation  input-output  instinct  integration-extension  intellectual-property  interdisciplinary  interface  interface-compatibility  internet  intersection-connectedness  interview  interview-prep  intricacy  intuition  invariance  iron-age  is-ought  iteration-recursion  iterative-methods  jargon  javascript  jobs  journos-pundits  judgement  julia  jvm  knowledge  kumbaya-kult  language  latency-throughput  latent-variables  LaTeX  learning  learning-theory  lecture-notes  lectures  left-wing  legacy  lens  let-me-see  levers  leviathan  lexical  libraries  life-history  linear-programming  links  linux  lisp  list  live-coding  llvm  local-global  logic  lol  low-hanging  machine-learning  magnitude  malaise  map-territory  maps  marginal  marketing  matching  math  measure  measurement  mechanics  mediterranean  memory-management  meta-analysis  meta:science  metabuch  metal-to-virtual  metameta  methodology  metrics  microsoft  mihai  minimalism  minimum-viable  miri-cfar  missing-heritability  mit  mobile  models  money  money-for-time  mooc  morality  mostly-modern  move-fast-(and-break-things)  multi  multiplicative  mystic  n-factor  nascent-state  network-structure  networking  neuro  neurons  nibble  nitty-gritty  nlp  no-go  noble-lie  notation  notetaking  novelty  numerics  objektbuch  ocaml-sml  occident  ocr  oly  oly-programming  oop  open-closed  openai  operational  optimization  orders  org:bleg  org:com  org:edge  org:edu  org:junk  org:mat  org:med  org:ngo  org:popup  organizing  orient  os  oss  osx  overflow  p:***  p:someday  packaging  papers  paradox  pareto  parsimony  paste  path-dependence  pdf  performance  pessimism  phase-transition  philosophy  phys-energy  physics  pic  pinboard  pls  plt  polarization  polisci  politics  poll  population-genetics  positivity  power  pragmatic  pre-ww2  prediction  preference-falsification  prepping  preprint  presentation  pro-rata  problem-solving  productivity  prof  programming  project  properties  property-rights  protocol-metadata  prudence  psychology  python  q-n-a  qra  quality  quantum  quantum-info  questions  quixotic  quotes  rand-approx  random  rant  rationality  ratty  realness  reason  recommendations  reddit  reduction  reference  reflection  regularizer  relativity  religion  replication  repo  research  research-program  resources-effects  retention  review  rhetoric  rigor  risk  robust  roots  rot  rsc  ruby  rust  saas  safety  sanctity-degradation  sapiens  scala  scale  scaling-tech  schelling  scholar  sci-comp  science  scitariat  search  security  sentiment  sequential  shift  shipping  signaling  signum  simplification-normalization  sinosphere  slides  slippery-slope  smoothness  social  social-psych  social-structure  soft-question  software  space-complexity  spearhead  spectral  speculation  ssc  stackex  stat-mech  state  state-of-art  static-dynamic  status  steel-man  stock-flow  stories  strategy  straussian  strings  structure  study  studying  stylized-facts  summary  summer-2014  sv  symmetry  synchrony  syntax  synthesis  system-design  systematic-ad-hoc  systems  tactics  tainter  tcs  tcstariat  teaching  tech  tech-infrastructure  technical-writing  technology  techtariat  temperature  terminal  the-basilisk  the-classics  the-great-west-whale  the-trenches  the-watchers  the-world-is-just-atoms  theory-practice  theos  thermo  thick-thin  things  thinking  threat-modeling  time  time-complexity  time-series  todo  toolkit  tools  top-n  topics  toxoplasmosis  traces  track-record  trade  tradeoffs  trees  trends  tribalism  trivia  troll  truth  turing  tutorial  tutoring  twitter  types  ubiquity  ui  unaffiliated  unintended-consequences  unit  universalism-particularism  unix  urban  urban-rural  us-them  ux  vcs  video  visual-understanding  visualization  visuo  volo-avolo  von-neumann  waves  web  webapp  weird  west-hunter  westminster  wiki  wire-guided  wkfly  workflow  working-stiff  world  worrydream  worse-is-better/the-right-thing  writing  yak-shaving  yoga  zeitgeist  🎓  👳  🔬  🖥 

Copy this bookmark:



description:


tags: