nhaliday + math.fa   32

Sobolev space - Wikipedia
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function itself and its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, thus a Banach space. Intuitively, a Sobolev space is a space of functions with sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.
math  concept  math.CA  math.FA  differential  inner-product  wiki  reference  regularity  smoothness  norms  nibble  zooming 
february 2017 by nhaliday
A brief philosophical discussion:
Measure theory, as much as any branch of mathematics, is an area where it is important to be acquainted with the basic notions and statements, but not desperately important to be acquainted with the detailed proofs, which are often rather unilluminating. One should always have in a mind a place where one could go and look if one ever did need to understand a proof: for me, that place is Rudin’s Real and Complex Analysis (Rudin’s “red book”).
gowers  pdf  math  math.CA  math.FA  philosophy  measure  exposition  synthesis  big-picture  hi-order-bits  ergodic  ground-up  summary  roadmap  mathtariat  proofs  nibble  unit  integral  zooming  p:whenever 
february 2017 by nhaliday
Cauchy-Schwarz inequality and Hölder's inequality - Mathematics Stack Exchange
- Cauchy-Schwarz (special case of Holder's inequality where p=q=1/2) implies Holder's inequality
- pith: define potential F(t) = int f^{pt} g^{q(1-t)}, show log F is midpoint-convex hence convex, then apply convexity between F(0) and F(1) for F(1/p) = ||fg||_1
q-n-a  overflow  math  estimate  proofs  ground-up  math.FA  inner-product  tidbits  norms  duality  nibble  integral 
january 2017 by nhaliday
Dvoretzky's theorem - Wikipedia
In mathematics, Dvoretzky's theorem is an important structural theorem about normed vector spaces proved by Aryeh Dvoretzky in the early 1960s, answering a question of Alexander Grothendieck. In essence, it says that every sufficiently high-dimensional normed vector space will have low-dimensional subspaces that are approximately Euclidean. Equivalently, every high-dimensional bounded symmetric convex set has low-dimensional sections that are approximately ellipsoids.

math  math.FA  inner-product  levers  characterization  geometry  math.MG  concentration-of-measure  multi  q-n-a  overflow  intuition  examples  proofs  dimensionality  gowers  mathtariat  tcstariat  quantum  quantum-info  norms  nibble  high-dimension  wiki  reference  curvature  convexity-curvature  tcs 
january 2017 by nhaliday
cv.complex variables - Absolute value inequality for complex numbers - MathOverflow
In general, once you've proven an inequality like this in R it holds automatically in any Euclidean space (including C) by averaging over projections. ("Inequality like this" = inequality where every term is the length of some linear combination of variable vectors in the space; here the vectors are a, b, c).

I learned this trick at MOP 30+ years ago, and don't know or remember who discovered it.
q-n-a  overflow  math  math.CV  estimate  tidbits  yoga  oly  mathtariat  math.FA  metabuch  inner-product  calculation  norms  nibble  tricki 
january 2017 by nhaliday
Cantor function - Wikipedia
- uniformly continuous but not absolutely continuous
- derivative zero almost everywhere but not constant
- see also: http://mathoverflow.net/questions/31603/why-do-probabilists-take-random-variables-to-be-borel-and-not-lebesgue-measura/31609#31609 (the exercise mentioned uses c(x)+x for c the Cantor function)
math  math.CA  counterexample  wiki  reference  multi  math.FA  atoms  measure  smoothness  singularity  nibble 
january 2017 by nhaliday
textbook recommendation - A good book of functional analysis - MathOverflow
among others:
Analysis Now - Pedersen (Thomas uses this from what I remember)
Functional Analysis - Lax
Functional Analysis - Rudin (interesting comments on this one)
Lectures and Exercises on Functional Analysis - Helemskii (what I've been working on recently)

math.CA  math.FA  math  books  recommendations  q-n-a  overflow  multi  nibble 
june 2016 by nhaliday

bundles : academeframemath

related tags

accretion  acm  additive-combo  advanced  algebra  algebraic-complexity  aphorism  approximation  arrows  atoms  berkeley  better-explained  big-list  big-picture  binomial  boltzmann  books  boolean-analysis  brunn-minkowski  calculation  cartoons  characterization  coarse-fine  concentration-of-measure  concept  convergence  convexity-curvature  counterexample  counting  course  cs  curiosity  curvature  database  definition  differential  dimensionality  direction  duality  elegance  embeddings  entropy-like  ergodic  estimate  examples  existence  expert  expert-experience  explanation  exposition  extrema  fourier  game-theory  geometry  gowers  graph-theory  graphs  ground-up  GT-101  hi-order-bits  hierarchy  high-dimension  homepage  identity  information-theory  inner-product  insight  integral  intuition  invariance  ising  israel  lecture-notes  lens  levers  limits  linear-algebra  linearity  links  list  local-global  logic  magnitude  markov  martingale  math  math.AT  math.CA  math.CO  math.CV  math.DS  math.FA  math.MG  math.NT  mathtariat  measure  metabuch  methodology  metric-space  mit  mixing  monte-carlo  motivation  multi  nibble  norms  oly  open-problems  optimization  ORFE  org:bleg  org:mat  overflow  p:*  p:**  p:someday  p:whenever  pdf  phase-transition  philosophy  physics  positivity  princeton  probabilistic-method  probability  problem-solving  prof  proofs  properties  q-n-a  quantifiers-sums  quantitative-qualitative  quantum  quantum-info  questions  quixotic  random  recommendations  reference  regularity  rigidity  rigor  roadmap  s:*  s:**  s:null  sampling  signum  singularity  smoothness  social-science  soft-question  spatial  spectral  stat-mech  stats  stirling  stochastic-processes  structure  sum-of-squares  summary  symmetry  synchrony  synthesis  tcs  tcstariat  techtariat  tensors  tidbits  tightness  top-n  topics  topology  tricki  tricks  uniqueness  unit  wiki  wisdom  wormholes  yoga  zooming  👳 

Copy this bookmark: