nhaliday + math.cv   17

Rational Sines of Rational Multiples of p
For which rational multiples of p is the sine rational? We have the three trivial cases
[0, pi/2, pi/6]
and we wish to show that these are essentially the only distinct rational sines of rational multiples of p.

The assertion about rational sines of rational multiples of p follows from two fundamental lemmas. The first is

Lemma 1: For any rational number q the value of sin(qp) is a root of a monic polynomial with integer coefficients.

[Pf uses some ideas unfamiliar to me: similarity parameter of Moebius (linear fraction) transformations, and finding a polynomial for a desired root by constructing a Moebius transformation with a finite period.]

...

Lemma 2: Any root of a monic polynomial f(x) with integer coefficients must either be an integer or irrational.

[Gauss's Lemma, cf Dummit-Foote.]

...
nibble  tidbits  org:junk  analysis  trivia  math  algebra  polynomials  fields  characterization  direction  math.CA  math.CV  ground-up 
july 2019 by nhaliday
cv.complex variables - Absolute value inequality for complex numbers - MathOverflow
In general, once you've proven an inequality like this in R it holds automatically in any Euclidean space (including C) by averaging over projections. ("Inequality like this" = inequality where every term is the length of some linear combination of variable vectors in the space; here the vectors are a, b, c).

I learned this trick at MOP 30+ years ago, and don't know or remember who discovered it.
q-n-a  overflow  math  math.CV  estimate  tidbits  yoga  oly  mathtariat  math.FA  metabuch  inner-product  calculation  norms  nibble  tricki 
january 2017 by nhaliday
ca.analysis and odes - Why do functions in complex analysis behave so well? (as opposed to functions in real analysis) - MathOverflow
Well, real-valued analytic functions are just as rigid as their complex-valued counterparts. The true question is why complex smooth (or complex differentiable) functions are automatically complex analytic, whilst real smooth (or real differentiable) functions need not be real analytic.
q-n-a  overflow  math  math.CA  math.CV  synthesis  curiosity  gowers  oly  mathtariat  tcstariat  comparison  rigidity  smoothness  singularity  regularity  nibble 
january 2017 by nhaliday

bundles : academeframemath

related tags

acm  additive-combo  algebra  algebraic-complexity  AMT  analysis  applications  better-explained  big-list  big-picture  binomial  calculation  characterization  cheatsheet  comparison  concentration-of-measure  concept  cs  curiosity  database  definition  differential  direction  distribution  duality  electromag  elegance  entropy-like  erdos  essay  estimate  examples  explanation  exposition  feynman  fields  fourier  game-theory  geometry  giants  gowers  graph-theory  ground-up  GT-101  heavyweights  hi-order-bits  identity  IEEE  information-theory  init  inner-product  integral  intuition  lecture-notes  levers  limits  list  logic  magnitude  math  math.CA  math.CO  math.CV  math.DS  math.FA  math.NT  mathtariat  metabuch  motivation  multi  multiplicative  nibble  nitty-gritty  norms  objektbuch  oly  org:bleg  org:junk  org:mat  orourke  overflow  papers  pdf  physics  polynomials  probability  problem-solving  proofs  properties  q-n-a  quantifiers-sums  quantum  quotes  reference  regularity  rigidity  s:*  singularity  smoothness  social-science  soft-question  stat-mech  stats  stirling  stories  street-fighting  synthesis  tcs  tcstariat  teaching  tensors  thurston  tidbits  tightness  top-n  topology  tricki  trivia  visual-understanding  visualization  waves  wiki  yoga 

Copy this bookmark:



description:


tags: