nhaliday + kernels   9

CS229T/STATS231: Statistical Learning Theory
Course by Percy Liang covers a mix of statistics, computational learning theory, and some online learning. Also surveys the state-of-the-art in theoretical understanding of deep learning (not much to cover unfortunately).
yoga  stanford  course  machine-learning  stats  👳  lecture-notes  acm  kernels  learning-theory  deep-learning  frontier  init  ground-up  unit  dimensionality  vc-dimension  entropy-like  extrema  moments  online-learning  bandits  p:***  explore-exploit  advanced 
june 2016 by nhaliday

bundles : acm

related tags

acm  acmtariat  advanced  adversarial  ai  amortization-potential  approximation  atoms  bandits  ben-recht  composition-decomposition  computer-vision  concept  convexity-curvature  course  curvature  deep-learning  dimensionality  dumb-ML  empirical  entropy-like  estimate  examples  expert  expert-experience  explanans  explore-exploit  exposition  extrema  frontier  game-theory  generalization  gowers  gradient-descent  ground-up  homepage  init  intricacy  intuition  kernels  language  learning-theory  lecture-notes  linear-algebra  linear-models  liner-notes  links  machine-learning  mathtariat  metabuch  michael-jordan  mit  ML-MAP-E  model-class  moments  nibble  nlp  numerics  occam  off-convex  online-learning  optimization  org:bleg  org:inst  org:mat  p:***  papers  parsimony  perturbation  preprint  princeton  probability  random  ranking  realness  reduction  reference  reflection  replication  research  rigor  robust  rounding  science  sebastien-bubeck  stanford  stats  stochastic-processes  stories  structure  success  summary  systematic-ad-hoc  talks  the-trenches  tightness  toolkit  tricks  tutorial  unit  vc-dimension  video  yoga  👳 

Copy this bookmark: