nhaliday + heavyweights + exposition   6

soft question - Thinking and Explaining - MathOverflow
- good question from Bill Thurston
- great answers by Terry Tao, fedja, Minhyong Kim, gowers, etc.

Terry Tao:
- symmetry as blurring/vibrating/wobbling, scale invariance
- anthropomorphization, adversarial perspective for estimates/inequalities/quantifiers, spending/economy

fedja walks through his though-process from another answer

Minhyong Kim: anthropology of mathematical philosophizing

Per Vognsen: normality as isotropy
comment: conjugate subgroup gHg^-1 ~ "H but somewhere else in G"

gowers: hidden things in basic mathematics/arithmetic
comment by Ryan Budney: x sin(x) via x -> (x, sin(x)), (x, y) -> xy
I kinda get what he's talking about but needed to use Mathematica to get the initial visualization down.
To remind myself later:
- xy can be easily visualized by juxtaposing the two parabolae x^2 and -x^2 diagonally
- x sin(x) can be visualized along that surface by moving your finger along the line (x, 0) but adding some oscillations in y direction according to sin(x)
q-n-a  soft-question  big-list  intuition  communication  teaching  math  thinking  writing  thurston  lens  overflow  synthesis  hi-order-bits  👳  insight  meta:math  clarity  nibble  giants  cartoons  gowers  mathtariat  better-explained  stories  the-trenches  problem-solving  homogeneity  symmetry  fedja  examples  philosophy  big-picture  vague  isotropy  reflection  spatial  ground-up  visual-understanding  polynomials  dimensionality  math.GR  worrydream  scholar  🎓  neurons  metabuch  yoga  retrofit  mental-math  metameta  wisdom  wordlessness  oscillation  operational  adversarial  quantifiers-sums  exposition  explanation  tricki  concrete  s:***  manifolds  invariance  dynamical  info-dynamics  cool  direction  elegance  heavyweights  analysis  guessing  grokkability-clarity  technical-writing 
january 2017 by nhaliday
Reflections on the recent solution of the cap-set problem I | Gowers's Weblog
As regular readers of this blog will know, I have a strong interest in the question of where mathematical ideas come from, and a strong conviction that they always result from a fairly systematic process — and that the opposite impression, that some ideas are incredible bolts from the blue that require “genius” or “sudden inspiration” to find, is an illusion that results from the way mathematicians present their proofs after they have discovered them.
math  research  academia  gowers  hmm  mathtariat  org:bleg  nibble  big-surf  algebraic-complexity  math.CO  questions  heavyweights  exposition  technical-writing  roots  problem-solving  polynomials  linear-algebra  motivation  guessing 
may 2016 by nhaliday

bundles : mathmetathinking

related tags

academia  acm  adversarial  alg-combo  algebra  algebraic-complexity  AMT  analysis  better-explained  big-list  big-picture  big-surf  books  cartoons  clarity  clever-rats  communication  concrete  cool  definition  differential  dimensionality  direction  dynamical  elegance  examples  existence  exocortex  explanation  exposition  fedja  film  geometry  giants  gowers  grokkability-clarity  ground-up  guessing  heavyweights  hi-order-bits  hmm  homogeneity  info-dynamics  insight  intuition  invariance  isotropy  lens  limits  linear-algebra  manifolds  math  math.AG  math.CA  math.CO  math.CV  math.DS  math.GR  mathtariat  mental-math  meta:math  metabuch  metameta  motivation  neurons  nibble  oly  operational  org:bleg  oscillation  overflow  philosophy  pic  polynomials  problem-solving  q-n-a  quantifiers-sums  questions  recommendations  reflection  research  retrofit  roots  s:***  scholar  soft-question  spatial  stirling  stories  symmetry  synthesis  teaching  technical-writing  the-trenches  thinking  thurston  tidbits  tricki  uniqueness  vague  visual-understanding  visualization  wisdom  wordlessness  worrydream  writing  yoga  🎓  👳 

Copy this bookmark: