nhaliday + graphical-models   29

Fitting a Structural Equation Model
seems rather unrigorous: nonlinear optimization, possibility of nonconvergence, doesn't even mention local vs. global optimality...
pdf  slides  lectures  acm  stats  hypothesis-testing  graphs  graphical-models  latent-variables  model-class  optimization  nonlinearity  gotchas  nibble  ML-MAP-E  iteration-recursion  convergence 
november 2017 by nhaliday
Does Learning to Read Improve Intelligence? A Longitudinal Multivariate Analysis in Identical Twins From Age 7 to 16
Stuart Richie, Bates, Plomin

SEM: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354297/figure/fig03/

The variance explained by each path in the diagrams included here can be calculated by squaring its path weight. To take one example, reading differences at age 12 in the model shown in Figure​Figure33 explain 7% of intelligence differences at age 16 (.262). However, since our measures are of differences, they are likely to include substantial amounts of noise: Measurement error may produce spurious differences. To remove this error variance, we can take an estimate of the reliability of the measures (generally high, since our measures are normed, standardized tests), which indicates the variance expected purely by the reliability of the measure, and subtract it from the observed variance between twins in our sample. Correcting for reliability in this way, the effect size estimates are somewhat larger; to take the above example, the reliability-corrected effect size of age 12 reading differences on age 16 intelligence differences is around 13% of the “signal” variance. It should be noted that the age 12 reading differences themselves are influenced by many previous paths from both reading and intelligence, as illustrated in Figure​Figure33.


The present study provided compelling evidence that improvements in reading ability, themselves caused purely by the nonshared environment, may result in improvements in both verbal and nonverbal cognitive ability, and may thus be a factor increasing cognitive diversity within families (Plomin, 2011). These associations are present at least as early as age 7, and are not—to the extent we were able to test this possibility—driven by differences in reading exposure. Since reading is a potentially remediable ability, these findings have implications for reading instruction: Early remediation of reading problems might not only aid in the growth of literacy, but may also improve more general cognitive abilities that are of critical importance across the life span.

Does Reading Cause Later Intelligence? Accounting for Stability in Models of Change: http://sci-hub.tw/10.1111/cdev.12669
Results from a state–trait model suggest that reported effects of reading ability on later intelligence may be artifacts of previously uncontrolled factors, both environmental in origin and stable during this developmental period, influencing both constructs throughout development.
study  albion  scitariat  spearhead  psychology  cog-psych  psychometrics  iq  intelligence  eden  language  psych-architecture  longitudinal  twin-study  developmental  environmental-effects  studying  🌞  retrofit  signal-noise  intervention  causation  graphs  graphical-models  flexibility  britain  neuro-nitgrit  effect-size  variance-components  measurement  multi  sequential  time  composition-decomposition  biodet  behavioral-gen  direct-indirect  systematic-ad-hoc  debate  hmm  pdf  piracy  flux-stasis 
september 2017 by nhaliday
PsycARTICLES - Is education associated with improvements in general cognitive ability, or in specific skills?
Results indicated that the association of education with improved cognitive test scores is not mediated by g, but consists of direct effects on specific cognitive skills. These results suggest a decoupling of educational gains from increases in general intellectual capacity.

look at Model C for the coefficients

How much does education improve intelligence? A meta-analysis: https://psyarxiv.com/kymhp
Intelligence test scores and educational duration are positively correlated. This correlation can be interpreted in two ways: students with greater propensity for intelligence go on to complete more education, or a longer education increases intelligence. We meta-analysed three categories of quasi-experimental studies of educational effects on intelligence: those estimating education-intelligence associations after controlling for earlier intelligence, those using compulsory schooling policy changes as instrumental variables, and those using regression-discontinuity designs on school-entry age cutoffs. Across 142 effect sizes from 42 datasets involving over 600,000 participants, we found consistent evidence for beneficial effects of education on cognitive abilities, of approximately 1 to 5 IQ points for an additional year of education. Moderator analyses indicated that the effects persisted across the lifespan, and were present on all broad categories of cognitive ability studied. Education appears to be the most consistent, robust, and durable method yet to be identified for raising intelligence.

three study designs: control for prior IQ, exogenous policy change, and school age cutoff regression discontinuity

It’s surprising that there isn’t much of a fadeout (p11) – half of the effect size is still there by age 70 (?!). That wasn’t what I expected. Maybe they’re being pulled upwards by smaller outlier studies – most of the bigger ones tend towards the lower end.

These gains are hollow, as they acknowledge in the discussion. Examples:
albion  spearhead  scitariat  study  psychology  cog-psych  iq  large-factor  education  intervention  null-result  longitudinal  britain  anglo  psychometrics  psych-architecture  graphs  graphical-models  causation  neuro-nitgrit  effect-size  stylized-facts  direct-indirect  flexibility  input-output  evidence-based  preprint  multi  optimism  meta-analysis  west-hunter  poast  commentary  aging  marginal  europe  nordic  shift  twitter  social  backup  ratty  gwern  links  flynn  environmental-effects  debate  roots 
march 2017 by nhaliday
What is the difference between inference and learning? - Quora
- basically boils down to latent variables vs. (hyper-)parameters
- so computing p(x_h|x_v,θ) vs. computing p(θ|X_v)
- from a completely Bayesian perspective, no real difference
- described in more detail in [Kevin Murphy, 10.4]
q-n-a  qra  jargon  machine-learning  stats  acm  bayesian  graphical-models  latent-variables  confusion  comparison  nibble 
january 2017 by nhaliday
CS 731 Advanced Artificial Intelligence - Spring 2011
- statistical machine learning
- sparsity in regression
- graphical models
- exponential families
- variational methods
- dimensionality reduction, eg, PCA
- Bayesian nonparametrics
- compressive sensing, matrix completion, and Johnson-Lindenstrauss
course  lecture-notes  yoga  acm  stats  machine-learning  graphical-models  graphs  model-class  bayesian  learning-theory  sparsity  embeddings  markov  monte-carlo  norms  unit  nonparametric  compressed-sensing  matrix-factorization  features 
january 2017 by nhaliday
collider C = A->C<-B
A, B d-connected (resp. conditioned on Z) iff path A~>B or B~>A w/o colliders (resp. path excluding vertices in Z)
A,B d-separated conditioned on Z iff not d-connected conditioned on Z

concept  explanation  causation  bayesian  graphical-models  cmu  org:edu  stats  methodology  tutorial  jargon  graphs  hypothesis-testing  confounding  🔬  direct-indirect  philosophy  definition  volo-avolo  multi  org:junk 
january 2017 by nhaliday
A Variant on “Statistically Controlling for Confounding Constructs is Harder than you Think”
It’s taken me some time to master this formalism, but I now find it quite easy to reason about these kinds of issues thanks to the brevity of graphical models as a notational technique. I’d love to see this approach become more popular in psychology, given that it has already become quite widespread in other fields. Of course, Westfall and Yarkoni are already advocating for something very similar by advocating for the use of SEM’s, but the graphical approach is strictly more general than SEM’s and, in my personal opinion, strictly simpler to reason about.
bayesian  stats  thinking  visualization  study  science  gelman  hmm  methodology  causation  acmtariat  meta:science  graphs  commentary  techtariat  hypothesis-testing  org:bleg  nibble  scitariat  confounding  🔬  info-dynamics  direct-indirect  volo-avolo  endo-exo  endogenous-exogenous  control  graphical-models 
may 2016 by nhaliday

bundles : academeacmframe

related tags

academia  acm  acmtariat  advanced  age-generation  aging  akrasia  albion  algorithmic-econ  analysis  anglo  apollonian-dionysian  applications  approximation  arrows  article  assortative-mating  atoms  backup  bayesian  behavioral-gen  big-picture  bio  biodet  bioinformatics  biophysical-econ  blowhards  books  britain  c:***  canada  causation  chart  checklists  clever-rats  cmu  coding-theory  cog-psych  columbia  commentary  comparison  composition-decomposition  compressed-sensing  concept  conceptual-vocab  confidence  confluence  confounding  confusion  control  convergence  convexity-curvature  correlation  course  curvature  data  data-science  debate  deep-learning  definition  demographics  developmental  differential  dimensionality  direct-indirect  discussion  distribution  DP  draft  dysgenics  eden  education  effect-size  embeddings  empirical  endo-exo  endogenous-exogenous  ends-means  entropy-like  environmental-effects  essay  estimate  europe  evidence-based  examples  experiment  expert  expert-experience  explanation  exposition  features  fertility  finiteness  flexibility  flux-stasis  flynn  fourier  game-theory  gelman  generative  genetic-correlation  genetics  genomics  gotchas  gradient-descent  graph-theory  graphical-models  graphs  ground-up  GWAS  gwern  GxE  hari-seldon  hi-order-bits  hmm  homepage  homogeneity  human-capital  hypothesis-testing  ideas  idk  IEEE  impact  info-dynamics  information-theory  init  input-output  intelligence  interdisciplinary  intervention  iq  ising  iteration-recursion  jargon  knowledge  language  large-factor  latent-variables  learning-theory  lecture-notes  lectures  levers  libraries  linear-algebra  linear-models  linearity  links  list  longitudinal  machine-learning  manifolds  marginal  markov  martingale  math  math.CA  math.DS  math.GN  matrix-factorization  measure  measurement  mechanism-design  meta-analysis  meta:math  meta:science  metabuch  metameta  methodology  microfoundations  ML-MAP-E  model-class  models  monte-carlo  motivation  multi  neuro-nitgrit  nibble  nitty-gritty  nlp  nonlinearity  nonparametric  nordic  norms  null-result  off-convex  optimism  optimization  org:bleg  org:edu  org:junk  org:mat  oss  overflow  p:*  p:***  p:someday  PAC  papers  paste  pdf  pennsylvania  people  personality  pessimism  phase-transition  philosophy  phys-energy  physics  pigeonhole-markov  piracy  poast  pop-structure  population-genetics  ppl  pragmatic  pre-2013  preprint  princeton  prioritizing  probability  problem-solving  productivity  prof  programming  psych-architecture  psychology  psychometrics  python  q-n-a  qra  QTL  quantified-self  quixotic  random  ratty  reading  recent-selection  recommendations  reference  regression  reinforcement  replication  repo  retrofit  roadmap  roots  rot  s:***  sample-complexity  sampling  sanjeev-arora  sapiens  scholar-pack  science  scitariat  sequential  series  shift  sib-study  signal-noise  simulation  skeleton  slides  smoothness  social  software  solid-study  sparsity  spearhead  spectral  spock  stanford  stat-mech  stat-power  state-of-art  stats  stochastic-processes  students  study  studying  stylized-facts  summary  survey  synthesis  systematic-ad-hoc  talks  tcs  techtariat  telos-atelos  the-bones  thermo  thinking  time  toolkit  tools  top-n  topology  track-record  trends  tricki  tutorial  twin-study  twitter  unit  variance-components  virginia-DC  visualization  volo-avolo  west-hunter  wiki  woah  working-stiff  yoga  🌞  🎓  👳  🔬 

Copy this bookmark: