nhaliday + circuits   16

Theory of Self-Reproducing Automata - John von Neumann
Fourth Lecture: THE ROLE OF HIGH AND OF EXTREMELY HIGH COMPLICATION

Comparisons between computing machines and the nervous systems. Estimates of size for computing machines, present and near future.

Estimates for size for the human central nervous system. Excursus about the “mixed” character of living organisms. Analog and digital elements. Observations about the “mixed” character of all componentry, artificial as well as natural. Interpretation of the position to be taken with respect to these.

Evaluation of the discrepancy in size between artificial and natural automata. Interpretation of this discrepancy in terms of physical factors. Nature of the materials used.

The probability of the presence of other intellectual factors. The role of complication and the theoretical penetration that it requires.

Questions of reliability and errors reconsidered. Probability of individual errors and length of procedure. Typical lengths of procedure for computing machines and for living organisms--that is, for artificial and for natural automata. Upper limits on acceptable probability of error in individual operations. Compensation by checking and self-correcting features.

Differences of principle in the way in which errors are dealt with in artificial and in natural automata. The “single error” principle in artificial automata. Crudeness of our approach in this case, due to the lack of adequate theory. More sophisticated treatment of this problem in natural automata: The role of the autonomy of parts. Connections between this autonomy and evolution.

- 10^10 neurons in brain, 10^4 vacuum tubes in largest computer at time
- machines faster: 5 ms from neuron potential to neuron potential, 10^-3 ms for vacuum tubes

https://en.wikipedia.org/wiki/John_von_Neumann#Computing
pdf  article  papers  essay  nibble  math  cs  computation  bio  neuro  neuro-nitgrit  scale  magnitude  comparison  acm  von-neumann  giants  thermo  phys-energy  speed  performance  time  density  frequency  hardware  ems  efficiency  dirty-hands  street-fighting  fermi  estimate  retention  physics  interdisciplinary  multi  wiki  links  people  🔬  atoms  automata  duplication  iteration-recursion  turing  complexity  measure  nature  technology  complex-systems  bits  information-theory  circuits  robust  structure  composition-decomposition  evolution  mutation  axioms  analogy  thinking  input-output  hi-order-bits  coding-theory  flexibility  rigidity 
april 2018 by nhaliday
What are the Laws of Biology?
The core finding of systems biology is that only a very small subset of possible network motifs is actually used and that these motifs recur in all kinds of different systems, from transcriptional to biochemical to neural networks. This is because only those arrangements of interactions effectively perform some useful operation, which underlies some necessary function at a cellular or organismal level. There are different arrangements for input summation, input comparison, integration over time, high-pass or low-pass filtering, negative auto-regulation, coincidence detection, periodic oscillation, bistability, rapid onset response, rapid offset response, turning a graded signal into a sharp pulse or boundary, and so on, and so on.

These are all familiar concepts and designs in engineering and computing, with well-known properties. In living organisms there is one other general property that the designs must satisfy: robustness. They have to work with noisy components, at a scale that’s highly susceptible to thermal noise and environmental perturbations. Of the subset of designs that perform some operation, only a much smaller subset will do it robustly enough to be useful in a living organism. That is, they can still perform their particular functions in the face of noisy or fluctuating inputs or variation in the number of components constituting the elements of the network itself.
scitariat  reflection  proposal  ideas  thinking  conceptual-vocab  lens  bio  complex-systems  selection  evolution  flux-stasis  network-structure  structure  composition-decomposition  IEEE  robust  signal-noise  perturbation  interdisciplinary  graphs  circuits  🌞  big-picture  hi-order-bits  nibble  synthesis 
november 2017 by nhaliday

bundles : tcs

related tags

aaronson  accretion  acm  acmtariat  algebraic-complexity  analogy  approximation  article  atoms  attention  automata  average-case  axioms  better-explained  big-list  big-picture  big-surf  bio  bits  boaz-barak  circuits  coding-theory  communication-complexity  comparison  complex-systems  complexity  composition-decomposition  computation  concept  conceptual-vocab  counting  course  crypto  cs  dana-moshkovitz  data-structures  deep-learning  density  dirty-hands  duplication  efficiency  ems  entropy-like  essay  estimate  evolution  expanders  expert  expert-experience  explanation  exposition  fermi  flexibility  flux-stasis  frequency  frontier  giants  gradient-descent  graphs  ground-up  hardness  hardware  harvard  hashing  hi-order-bits  hierarchy  ideas  IEEE  information-theory  init  input-output  interdisciplinary  iteration-recursion  knowledge  learning-theory  lecture-notes  lens  linear-algebra  liner-notes  links  list  lower-bounds  luca-trevisan  machine-learning  madhu-sudan  magnitude  math  math.GR  math.NT  math.RT  measure  mit  model-class  multi  mutation  naturality  nature  network-structure  neuro  neuro-nitgrit  nibble  no-go  ocw  open-problems  org:bleg  overflow  p:*  p:**  p:whenever  papers  pcp  pdf  people  performance  perturbation  phys-energy  physics  princeton  probabilistic-method  programming  proof-systems  proofs  proposal  pseudorandomness  q-n-a  quantum  quantum-info  questions  quixotic  rand-approx  rand-complexity  random  reading  recommendations  reflection  relativization  research  retention  rigidity  rigorous-crypto  robust  salil-vadhan  scale  scitariat  selection  sequential  signal-noise  space-complexity  sparsity  spectral  speed  street-fighting  structure  summary  synthesis  tcs  tcstariat  technology  thermo  thinking  tidbits  time  top-n  topics  tricki  turing  UGC  unit  valiant  volo-avolo  von-neumann  washington  wigderson  wiki  yoga  🌞  👳  🔬 

Copy this bookmark:



description:


tags: