nhaliday + blowhards + latency-throughput   2

Rob Pike: Notes on Programming in C
Issues of typography
Sometimes they care too much: pretty printers mechanically produce pretty output that accentuates irrelevant detail in the program, which is as sensible as putting all the prepositions in English text in bold font. Although many people think programs should look like the Algol-68 report (and some systems even require you to edit programs in that style), a clear program is not made any clearer by such presentation, and a bad program is only made laughable.
Typographic conventions consistently held are important to clear presentation, of course - indentation is probably the best known and most useful example - but when the ink obscures the intent, typography has taken over.


Finally, I prefer minimum-length but maximum-information names, and then let the context fill in the rest. Globals, for instance, typically have little context when they are used, so their names need to be relatively evocative. Thus I say maxphysaddr (not MaximumPhysicalAddress) for a global variable, but np not NodePointer for a pointer locally defined and used. This is largely a matter of taste, but taste is relevant to clarity.


C is unusual in that it allows pointers to point to anything. Pointers are sharp tools, and like any such tool, used well they can be delightfully productive, but used badly they can do great damage (I sunk a wood chisel into my thumb a few days before writing this). Pointers have a bad reputation in academia, because they are considered too dangerous, dirty somehow. But I think they are powerful notation, which means they can help us express ourselves clearly.
Consider: When you have a pointer to an object, it is a name for exactly that object and no other.


A delicate matter, requiring taste and judgement. I tend to err on the side of eliminating comments, for several reasons. First, if the code is clear, and uses good type names and variable names, it should explain itself. Second, comments aren't checked by the compiler, so there is no guarantee they're right, especially after the code is modified. A misleading comment can be very confusing. Third, the issue of typography: comments clutter code.
But I do comment sometimes. Almost exclusively, I use them as an introduction to what follows.


Most programs are too complicated - that is, more complex than they need to be to solve their problems efficiently. Why? Mostly it's because of bad design, but I will skip that issue here because it's a big one. But programs are often complicated at the microscopic level, and that is something I can address here.
Rule 1. You can't tell where a program is going to spend its time. Bottlenecks occur in surprising places, so don't try to second guess and put in a speed hack until you've proven that's where the bottleneck is.

Rule 2. Measure. Don't tune for speed until you've measured, and even then don't unless one part of the code overwhelms the rest.

Rule 3. Fancy algorithms are slow when n is small, and n is usually small. Fancy algorithms have big constants. Until you know that n is frequently going to be big, don't get fancy. (Even if n does get big, use Rule 2 first.) For example, binary trees are always faster than splay trees for workaday problems.

Rule 4. Fancy algorithms are buggier than simple ones, and they're much harder to implement. Use simple algorithms as well as simple data structures.

The following data structures are a complete list for almost all practical programs:

linked list
hash table
binary tree
Of course, you must also be prepared to collect these into compound data structures. For instance, a symbol table might be implemented as a hash table containing linked lists of arrays of characters.
Rule 5. Data dominates. If you've chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming. (See The Mythical Man-Month: Essays on Software Engineering by F. P. Brooks, page 102.)

Rule 6. There is no Rule 6.

Programming with data.
One of the reasons data-driven programs are not common, at least among beginners, is the tyranny of Pascal. Pascal, like its creator, believes firmly in the separation of code and data. It therefore (at least in its original form) has no ability to create initialized data. This flies in the face of the theories of Turing and von Neumann, which define the basic principles of the stored-program computer. Code and data are the same, or at least they can be. How else can you explain how a compiler works? (Functional languages have a similar problem with I/O.)

Function pointers
Another result of the tyranny of Pascal is that beginners don't use function pointers. (You can't have function-valued variables in Pascal.) Using function pointers to encode complexity has some interesting properties.
Some of the complexity is passed to the routine pointed to. The routine must obey some standard protocol - it's one of a set of routines invoked identically - but beyond that, what it does is its business alone. The complexity is distributed.

There is this idea of a protocol, in that all functions used similarly must behave similarly. This makes for easy documentation, testing, growth and even making the program run distributed over a network - the protocol can be encoded as remote procedure calls.

I argue that clear use of function pointers is the heart of object-oriented programming. Given a set of operations you want to perform on data, and a set of data types you want to respond to those operations, the easiest way to put the program together is with a group of function pointers for each type. This, in a nutshell, defines class and method. The O-O languages give you more of course - prettier syntax, derived types and so on - but conceptually they provide little extra.


Include files
Simple rule: include files should never include include files. If instead they state (in comments or implicitly) what files they need to have included first, the problem of deciding which files to include is pushed to the user (programmer) but in a way that's easy to handle and that, by construction, avoids multiple inclusions. Multiple inclusions are a bane of systems programming. It's not rare to have files included five or more times to compile a single C source file. The Unix /usr/include/sys stuff is terrible this way.
There's a little dance involving #ifdef's that can prevent a file being read twice, but it's usually done wrong in practice - the #ifdef's are in the file itself, not the file that includes it. The result is often thousands of needless lines of code passing through the lexical analyzer, which is (in good compilers) the most expensive phase.

Just follow the simple rule.

cf https://stackoverflow.com/questions/1101267/where-does-the-compiler-spend-most-of-its-time-during-parsing
First, I don't think it actually is true: in many compilers, most time is not spend in lexing source code. For example, in C++ compilers (e.g. g++), most time is spend in semantic analysis, in particular in overload resolution (trying to find out what implicit template instantiations to perform). Also, in C and C++, most time is often spend in optimization (creating graph representations of individual functions or the whole translation unit, and then running long algorithms on these graphs).

When comparing lexical and syntactical analysis, it may indeed be the case that lexical analysis is more expensive. This is because both use state machines, i.e. there is a fixed number of actions per element, but the number of elements is much larger in lexical analysis (characters) than in syntactical analysis (tokens).

programming  systems  philosophy  c(pp)  summer-2014  intricacy  engineering  rhetoric  contrarianism  diogenes  parsimony  worse-is-better/the-right-thing  data-structures  list  algorithms  stylized-facts  essay  ideas  performance  functional  state  pls  oop  gotchas  blowhards  duplication  compilers  syntax  lexical  checklists  metabuch  lens  notation  thinking  neurons  guide  pareto  heuristic  time  cost-benefit  multi  q-n-a  stackex  plt  hn  commentary  minimalism  techtariat  rsc  writing  technical-writing  cracker-prog  code-organizing  grokkability  protocol-metadata  direct-indirect  grokkability-clarity  latency-throughput 
august 2014 by nhaliday

bundles : peeps

Copy this bookmark: