nhaliday + acm + symmetry   6

bounds - What is the variance of the maximum of a sample? - Cross Validated
- sum of variances is always a bound
- can't do better even for iid Bernoulli
- looks like nice argument from well-known probabilist (using E[(X-Y)^2] = 2Var X), but not clear to me how he gets to sum_i instead of sum_{i,j} in the union bound?
edit: argument is that, for j = argmax_k Y_k, we have r < X_i - Y_j <= X_i - Y_i for all i, including i = argmax_k X_k
- different proof here (later pages): http://www.ism.ac.jp/editsec/aism/pdf/047_1_0185.pdf
Var(X_n:n) <= sum Var(X_k:n) + 2 sum_{i < j} Cov(X_i:n, X_j:n) = Var(sum X_k:n) = Var(sum X_k) = nσ^2
why are the covariances nonnegative? (are they?). intuitively seems true.
- for that, see https://pinboard.in/u:nhaliday/b:ed4466204bb1
- note that this proof shows more generally that sum Var(X_k:n) <= sum Var(X_k)
- apparently that holds for dependent X_k too? http://mathoverflow.net/a/96943/20644
q-n-a  overflow  stats  acm  distribution  tails  bias-variance  moments  estimate  magnitude  probability  iidness  tidbits  concentration-of-measure  multi  orders  levers  extrema  nibble  bonferroni  coarse-fine  expert  symmetry  s:*  expert-experience  proofs 
february 2017 by nhaliday
Breeding the breeder's equation - Gene Expression
- interesting fact about normal distribution: when thresholding Gaussian r.v. X ~ N(0, σ^2) at X > 0, the new mean μ_s satisfies μ_s = pdf(X,t)/(1-cdf(X,t)) σ^2
- follows from direct calculation (any deeper reason?)
- note (using Taylor/asymptotic expansion of complementary error function) that this is Θ(t) as t -> 0 or ∞ (w/ different constants)
- for X ~ N(0, 1), can calculate 0 = cdf(X, t)μ_<t + (1-cdf(X, t))μ_>t => μ_<t = -pdf(X, t)/cdf(X, t)
- this declines quickly w/ t (like e^{-t^2/2}). as t -> 0, it goes like -sqrt(2/pi) + higher-order terms ~ -0.8.

Average of a tail of a normal distribution: https://stats.stackexchange.com/questions/26805/average-of-a-tail-of-a-normal-distribution

Truncated normal distribution: https://en.wikipedia.org/wiki/Truncated_normal_distribution
gnxp  explanation  concept  bio  genetics  population-genetics  agri-mindset  analysis  scitariat  org:sci  nibble  methodology  distribution  tidbits  probability  stats  acm  AMT  limits  magnitude  identity  integral  street-fighting  symmetry  s:*  tails  multi  q-n-a  overflow  wiki  reference  objektbuch  proofs 
december 2016 by nhaliday

bundles : abstractacademeacmframemathphysicsproblem-solving

Copy this bookmark: