gt.geometric topology - Intuitive crutches for higher dimensional thinking - MathOverflow

december 2016 by nhaliday

Terry Tao:

I can't help you much with high-dimensional topology - it's not my field, and I've not picked up the various tricks topologists use to get a grip on the subject - but when dealing with the geometry of high-dimensional (or infinite-dimensional) vector spaces such as R^n, there are plenty of ways to conceptualise these spaces that do not require visualising more than three dimensions directly.

For instance, one can view a high-dimensional vector space as a state space for a system with many degrees of freedom. A megapixel image, for instance, is a point in a million-dimensional vector space; by varying the image, one can explore the space, and various subsets of this space correspond to various classes of images.

One can similarly interpret sound waves, a box of gases, an ecosystem, a voting population, a stream of digital data, trials of random variables, the results of a statistical survey, a probabilistic strategy in a two-player game, and many other concrete objects as states in a high-dimensional vector space, and various basic concepts such as convexity, distance, linearity, change of variables, orthogonality, or inner product can have very natural meanings in some of these models (though not in all).

It can take a bit of both theory and practice to merge one's intuition for these things with one's spatial intuition for vectors and vector spaces, but it can be done eventually (much as after one has enough exposure to measure theory, one can start merging one's intuition regarding cardinality, mass, length, volume, probability, cost, charge, and any number of other "real-life" measures).

For instance, the fact that most of the mass of a unit ball in high dimensions lurks near the boundary of the ball can be interpreted as a manifestation of the law of large numbers, using the interpretation of a high-dimensional vector space as the state space for a large number of trials of a random variable.

More generally, many facts about low-dimensional projections or slices of high-dimensional objects can be viewed from a probabilistic, statistical, or signal processing perspective.

Scott Aaronson:

Here are some of the crutches I've relied on. (Admittedly, my crutches are probably much more useful for theoretical computer science, combinatorics, and probability than they are for geometry, topology, or physics. On a related note, I personally have a much easier time thinking about R^n than about, say, R^4 or R^5!)

1. If you're trying to visualize some 4D phenomenon P, first think of a related 3D phenomenon P', and then imagine yourself as a 2D being who's trying to visualize P'. The advantage is that, unlike with the 4D vs. 3D case, you yourself can easily switch between the 3D and 2D perspectives, and can therefore get a sense of exactly what information is being lost when you drop a dimension. (You could call this the "Flatland trick," after the most famous literary work to rely on it.)

2. As someone else mentioned, discretize! Instead of thinking about R^n, think about the Boolean hypercube {0,1}^n, which is finite and usually easier to get intuition about. (When working on problems, I often find myself drawing {0,1}^4 on a sheet of paper by drawing two copies of {0,1}^3 and then connecting the corresponding vertices.)

3. Instead of thinking about a subset S⊆R^n, think about its characteristic function f:R^n→{0,1}. I don't know why that trivial perspective switch makes such a big difference, but it does ... maybe because it shifts your attention to the process of computing f, and makes you forget about the hopeless task of visualizing S!

4. One of the central facts about R^n is that, while it has "room" for only n orthogonal vectors, it has room for exp(n) almost-orthogonal vectors. Internalize that one fact, and so many other properties of R^n (for example, that the n-sphere resembles a "ball with spikes sticking out," as someone mentioned before) will suddenly seem non-mysterious. In turn, one way to internalize the fact that R^n has so many almost-orthogonal vectors is to internalize Shannon's theorem that there exist good error-correcting codes.

5. To get a feel for some high-dimensional object, ask questions about the behavior of a process that takes place on that object. For example: if I drop a ball here, which local minimum will it settle into? How long does this random walk on {0,1}^n take to mix?

Gil Kalai:

This is a slightly different point, but Vitali Milman, who works in high-dimensional convexity, likes to draw high-dimensional convex bodies in a non-convex way. This is to convey the point that if you take the convex hull of a few points on the unit sphere of R^n, then for large n very little of the measure of the convex body is anywhere near the corners, so in a certain sense the body is a bit like a small sphere with long thin "spikes".

q-n-a
intuition
math
visual-understanding
list
discussion
thurston
tidbits
aaronson
tcs
geometry
problem-solving
yoga
👳
big-list
metabuch
tcstariat
gowers
mathtariat
acm
overflow
soft-question
levers
dimensionality
hi-order-bits
insight
synthesis
thinking
models
cartoons
coding-theory
information-theory
probability
concentration-of-measure
magnitude
linear-algebra
boolean-analysis
analogy
arrows
lifts-projections
measure
markov
sampling
shannon
conceptual-vocab
nibble
degrees-of-freedom
worrydream
neurons
retrofit
oscillation
paradox
novelty
tricki
concrete
high-dimension
s:***
manifolds
direction
curvature
convexity-curvature
elegance
guessing
I can't help you much with high-dimensional topology - it's not my field, and I've not picked up the various tricks topologists use to get a grip on the subject - but when dealing with the geometry of high-dimensional (or infinite-dimensional) vector spaces such as R^n, there are plenty of ways to conceptualise these spaces that do not require visualising more than three dimensions directly.

For instance, one can view a high-dimensional vector space as a state space for a system with many degrees of freedom. A megapixel image, for instance, is a point in a million-dimensional vector space; by varying the image, one can explore the space, and various subsets of this space correspond to various classes of images.

One can similarly interpret sound waves, a box of gases, an ecosystem, a voting population, a stream of digital data, trials of random variables, the results of a statistical survey, a probabilistic strategy in a two-player game, and many other concrete objects as states in a high-dimensional vector space, and various basic concepts such as convexity, distance, linearity, change of variables, orthogonality, or inner product can have very natural meanings in some of these models (though not in all).

It can take a bit of both theory and practice to merge one's intuition for these things with one's spatial intuition for vectors and vector spaces, but it can be done eventually (much as after one has enough exposure to measure theory, one can start merging one's intuition regarding cardinality, mass, length, volume, probability, cost, charge, and any number of other "real-life" measures).

For instance, the fact that most of the mass of a unit ball in high dimensions lurks near the boundary of the ball can be interpreted as a manifestation of the law of large numbers, using the interpretation of a high-dimensional vector space as the state space for a large number of trials of a random variable.

More generally, many facts about low-dimensional projections or slices of high-dimensional objects can be viewed from a probabilistic, statistical, or signal processing perspective.

Scott Aaronson:

Here are some of the crutches I've relied on. (Admittedly, my crutches are probably much more useful for theoretical computer science, combinatorics, and probability than they are for geometry, topology, or physics. On a related note, I personally have a much easier time thinking about R^n than about, say, R^4 or R^5!)

1. If you're trying to visualize some 4D phenomenon P, first think of a related 3D phenomenon P', and then imagine yourself as a 2D being who's trying to visualize P'. The advantage is that, unlike with the 4D vs. 3D case, you yourself can easily switch between the 3D and 2D perspectives, and can therefore get a sense of exactly what information is being lost when you drop a dimension. (You could call this the "Flatland trick," after the most famous literary work to rely on it.)

2. As someone else mentioned, discretize! Instead of thinking about R^n, think about the Boolean hypercube {0,1}^n, which is finite and usually easier to get intuition about. (When working on problems, I often find myself drawing {0,1}^4 on a sheet of paper by drawing two copies of {0,1}^3 and then connecting the corresponding vertices.)

3. Instead of thinking about a subset S⊆R^n, think about its characteristic function f:R^n→{0,1}. I don't know why that trivial perspective switch makes such a big difference, but it does ... maybe because it shifts your attention to the process of computing f, and makes you forget about the hopeless task of visualizing S!

4. One of the central facts about R^n is that, while it has "room" for only n orthogonal vectors, it has room for exp(n) almost-orthogonal vectors. Internalize that one fact, and so many other properties of R^n (for example, that the n-sphere resembles a "ball with spikes sticking out," as someone mentioned before) will suddenly seem non-mysterious. In turn, one way to internalize the fact that R^n has so many almost-orthogonal vectors is to internalize Shannon's theorem that there exist good error-correcting codes.

5. To get a feel for some high-dimensional object, ask questions about the behavior of a process that takes place on that object. For example: if I drop a ball here, which local minimum will it settle into? How long does this random walk on {0,1}^n take to mix?

Gil Kalai:

This is a slightly different point, but Vitali Milman, who works in high-dimensional convexity, likes to draw high-dimensional convex bodies in a non-convex way. This is to convey the point that if you take the convex hull of a few points on the unit sphere of R^n, then for large n very little of the measure of the convex body is anywhere near the corners, so in a certain sense the body is a bit like a small sphere with long thin "spikes".

december 2016 by nhaliday

Programming books you might want to consider reading

october 2016 by nhaliday

- surprisingly theory-focused actually (w/ a smattering of OS/systems and hardware)

- cites among others: DPV, CLRS, Okasaki, Erik Demaine

- a bunch of AGT stuff

- some SWE stuff

- some business/tech culture stuff

- math (calc and prob.)

- he mentions Jukna's Extremal Combinatorics in passing at the end, wow

advice
dan-luu
engineering
books
list
recommendations
reading
accretion
🖥
2016
top-n
info-foraging
techtariat
confluence
p:null
quixotic
advanced
pragmatic
applications
applicability-prereqs
working-stiff
career
jobs
recruiting
algorithms
tcs
data-structures
functional
performance
time-complexity
random
rand-approx
complexity
cs
computation
learning-theory
machine-learning
acm
os
systems
linux
unix
concurrency
s:***
programming
nitty-gritty
problem-solving
hardware
algorithmic-econ
game-theory
mechanism-design
IEEE
erik-demaine
ground-up
legacy
code-dive
system-design
best-practices
business
microsoft
competition
culture
dark-arts
management
tech
twitter
sv
productivity
aging
age-generation
art
math
probability
math.CO
math.CA
electromag
p:someday
intricacy
abstraction
composition-decomposition
coupling-cohesion
code-organizing
metal-to-virtual
extrema
- cites among others: DPV, CLRS, Okasaki, Erik Demaine

- a bunch of AGT stuff

- some SWE stuff

- some business/tech culture stuff

- math (calc and prob.)

- he mentions Jukna's Extremal Combinatorics in passing at the end, wow

october 2016 by nhaliday

Useful Math | Academically Interesting

math academia list roadmap machine-learning tcs yoga acm synthesis metabuch clever-rats ratty scholar-pack top-n hi-order-bits levers 🎓 👳 pre-2013 acmtariat big-picture org:bleg nibble metameta impact meta:math skeleton s:*** p:*** applications chart knowledge studying prioritizing ideas track-record checklists tricki problem-solving optimization differential linear-algebra probability stochastic-processes martingale estimate math.CA series approximation deep-learning graphs graph-theory graphical-models model-class pigeonhole-markov linearity atoms distribution entropy-like dimensionality homogeneity spectral fourier arrows finiteness math.GN topology smoothness measure manifolds curvature concept conceptual-vocab convexity-curvature confluence toolkit apollonian-dionysian pragmatic telos-atelos ends-means quixotic

february 2016 by nhaliday

math academia list roadmap machine-learning tcs yoga acm synthesis metabuch clever-rats ratty scholar-pack top-n hi-order-bits levers 🎓 👳 pre-2013 acmtariat big-picture org:bleg nibble metameta impact meta:math skeleton s:*** p:*** applications chart knowledge studying prioritizing ideas track-record checklists tricki problem-solving optimization differential linear-algebra probability stochastic-processes martingale estimate math.CA series approximation deep-learning graphs graph-theory graphical-models model-class pigeonhole-markov linearity atoms distribution entropy-like dimensionality homogeneity spectral fourier arrows finiteness math.GN topology smoothness measure manifolds curvature concept conceptual-vocab convexity-curvature confluence toolkit apollonian-dionysian pragmatic telos-atelos ends-means quixotic

february 2016 by nhaliday

**related tags**

Copy this bookmark: