nhaliday + acm + monte-carlo   16

Stat 260/CS 294: Bayesian Modeling and Inference
- Priors (conjugate, noninformative, reference)
- Hierarchical models, spatial models, longitudinal models, dynamic models, survival models
- Testing
- Model choice
- Inference (importance sampling, MCMC, sequential Monte Carlo)
- Nonparametric models (Dirichlet processes, Gaussian processes, neutral-to-the-right processes, completely random measures)
- Decision theory and frequentist perspectives (complete class theorems, consistency, empirical Bayes)
- Experimental design
unit  course  berkeley  expert  michael-jordan  machine-learning  acm  bayesian  probability  stats  lecture-notes  priors-posteriors  markov  monte-carlo  frequentist  latent-variables  decision-theory  expert-experience  confidence  sampling 
july 2017 by nhaliday
CS 731 Advanced Artificial Intelligence - Spring 2011
- statistical machine learning
- sparsity in regression
- graphical models
- exponential families
- variational methods
- dimensionality reduction, eg, PCA
- Bayesian nonparametrics
- compressive sensing, matrix completion, and Johnson-Lindenstrauss
course  lecture-notes  yoga  acm  stats  machine-learning  graphical-models  graphs  model-class  bayesian  learning-theory  sparsity  embeddings  markov  monte-carlo  norms  unit  nonparametric  compressed-sensing  matrix-factorization  features 
january 2017 by nhaliday

bundles : academeacmframe

related tags

accretion  acm  advanced  algorithms  analysis  approximation  article  atoms  bayesian  behavioral-gen  benchmarks  berkeley  bias-variance  big-picture  biodet  books  calculation  cmu  columbia  comparison  compressed-sensing  concentration-of-measure  concept  confidence  confusion  convexity-curvature  course  curvature  data  data-science  decision-theory  deep-learning  dimensionality  distribution  draft  embeddings  encyclopedic  enhancement  ensembles  estimate  expectancy  expert  expert-experience  explanation  exposition  extrema  faq  features  frequentist  generative  gradient-descent  graphical-models  graphs  ground-up  gwern  high-dimension  ideas  iidness  init  jargon  latent-variables  learning-theory  lecture-notes  limits  linear-models  machine-learning  magnitude  markov  math  matrix-factorization  metabuch  methodology  michael-jordan  mixing  ML-MAP-E  model-class  moments  monte-carlo  nibble  nlp  nonparametric  norms  off-convex  optimization  orders  org:edu  org:mat  outliers  overflow  p:*  p:***  PAC  parametric  pdf  phys-energy  pls  ppl  princeton  priors-posteriors  probability  programming  q-n-a  qra  quixotic  reference  regression  reinforcement  sample-complexity  sampling  sanjeev-arora  scaling-up  selection  slides  sparsity  stats  stochastic-processes  summary  synthesis  tails  talks  tcs  techtariat  tidbits  tightness  toolkit  tutorial  unit  wiki  yoga  👳 

Copy this bookmark: