nhaliday + acm + measure   16

Theory of Self-Reproducing Automata - John von Neumann
Fourth Lecture: THE ROLE OF HIGH AND OF EXTREMELY HIGH COMPLICATION

Comparisons between computing machines and the nervous systems. Estimates of size for computing machines, present and near future.

Estimates for size for the human central nervous system. Excursus about the “mixed” character of living organisms. Analog and digital elements. Observations about the “mixed” character of all componentry, artificial as well as natural. Interpretation of the position to be taken with respect to these.

Evaluation of the discrepancy in size between artificial and natural automata. Interpretation of this discrepancy in terms of physical factors. Nature of the materials used.

The probability of the presence of other intellectual factors. The role of complication and the theoretical penetration that it requires.

Questions of reliability and errors reconsidered. Probability of individual errors and length of procedure. Typical lengths of procedure for computing machines and for living organisms--that is, for artificial and for natural automata. Upper limits on acceptable probability of error in individual operations. Compensation by checking and self-correcting features.

Differences of principle in the way in which errors are dealt with in artificial and in natural automata. The “single error” principle in artificial automata. Crudeness of our approach in this case, due to the lack of adequate theory. More sophisticated treatment of this problem in natural automata: The role of the autonomy of parts. Connections between this autonomy and evolution.

- 10^10 neurons in brain, 10^4 vacuum tubes in largest computer at time
- machines faster: 5 ms from neuron potential to neuron potential, 10^-3 ms for vacuum tubes

https://en.wikipedia.org/wiki/John_von_Neumann#Computing
pdf  article  papers  essay  nibble  math  cs  computation  bio  neuro  neuro-nitgrit  scale  magnitude  comparison  acm  von-neumann  giants  thermo  phys-energy  speed  performance  time  density  frequency  hardware  ems  efficiency  dirty-hands  street-fighting  fermi  estimate  retention  physics  interdisciplinary  multi  wiki  links  people  🔬  atoms  duplication  iteration-recursion  turing  complexity  measure  nature  technology  complex-systems  bits  information-theory  circuits  robust  structure  composition-decomposition  evolution  mutation  axioms  analogy  thinking  input-output  hi-order-bits  coding-theory  flexibility  rigidity  automata-languages 
april 2018 by nhaliday
Pearson correlation coefficient - Wikipedia
https://en.wikipedia.org/wiki/Coefficient_of_determination
what does this mean?: https://twitter.com/GarettJones/status/863546692724858880
deleted but it was about the Pearson correlation distance: 1-r
I guess it's a metric

https://en.wikipedia.org/wiki/Explained_variation

http://infoproc.blogspot.com/2014/02/correlation-and-variance.html
A less misleading way to think about the correlation R is as follows: given X,Y from a standardized bivariate distribution with correlation R, an increase in X leads to an expected increase in Y: dY = R dX. In other words, students with +1 SD SAT score have, on average, roughly +0.4 SD college GPAs. Similarly, students with +1 SD college GPAs have on average +0.4 SAT.

this reminds me of the breeder's equation (but it uses r instead of h^2, so it can't actually be the same)

https://www.reddit.com/r/slatestarcodex/comments/631haf/on_the_commentariat_here_and_why_i_dont_think_i/dfx4e2s/
stats  science  hypothesis-testing  correlation  metrics  plots  regression  wiki  reference  nibble  methodology  multi  twitter  social  discussion  best-practices  econotariat  garett-jones  concept  conceptual-vocab  accuracy  causation  acm  matrix-factorization  todo  explanation  yoga  hsu  street-fighting  levers  🌞  2014  scitariat  variance-components  meta:prediction  biodet  s:**  mental-math  reddit  commentary  ssc  poast  gwern  data-science  metric-space  similarity  measure  dependence-independence 
may 2017 by nhaliday
Mixing (mathematics) - Wikipedia
One way to describe this is that strong mixing implies that for any two possible states of the system (realizations of the random variable), when given a sufficient amount of time between the two states, the occurrence of the states is independent.

Mixing coefficient is
α(n) = sup{|P(A∪B) - P(A)P(B)| : A in σ(X_0, ..., X_{t-1}), B in σ(X_{t+n}, ...), t >= 0}
for σ(...) the sigma algebra generated by those r.v.s.

So it's a notion of total variational distance between the true distribution and the product distribution.
concept  math  acm  physics  probability  stochastic-processes  definition  mixing  iidness  wiki  reference  nibble  limits  ergodic  math.DS  measure  dependence-independence 
february 2017 by nhaliday
inequalities - Is the Jaccard distance a distance? - MathOverflow
Steinhaus Transform
the referenced survey: http://kenclarkson.org/nn_survey/p.pdf

It's known that this transformation produces a metric from a metric. Now if you take as the base metric D the symmetric difference between two sets, what you end up with is the Jaccard distance (which actually is known by many other names as well).
q-n-a  overflow  nibble  math  acm  sublinear  metrics  metric-space  proofs  math.CO  tcstariat  arrows  reduction  measure  math.MG  similarity  multi  papers  survey  computational-geometry  cs  algorithms  pdf  positivity  msr  tidbits  intersection  curvature  convexity-curvature  intersection-connectedness  signum 
february 2017 by nhaliday
Prékopa–Leindler inequality | Academically Interesting
Consider the following statements:
1. The shape with the largest volume enclosed by a given surface area is the n-dimensional sphere.
2. A marginal or sum of log-concave distributions is log-concave.
3. Any Lipschitz function of a standard n-dimensional Gaussian distribution concentrates around its mean.
What do these all have in common? Despite being fairly non-trivial and deep results, they all can be proved in less than half of a page using the Prékopa–Leindler inequality.

ie, Brunn-Minkowski
acmtariat  clever-rats  ratty  math  acm  geometry  measure  math.MG  estimate  distribution  concentration-of-measure  smoothness  regularity  org:bleg  nibble  brunn-minkowski  curvature  convexity-curvature 
february 2017 by nhaliday
gt.geometric topology - Intuitive crutches for higher dimensional thinking - MathOverflow
Terry Tao:
I can't help you much with high-dimensional topology - it's not my field, and I've not picked up the various tricks topologists use to get a grip on the subject - but when dealing with the geometry of high-dimensional (or infinite-dimensional) vector spaces such as R^n, there are plenty of ways to conceptualise these spaces that do not require visualising more than three dimensions directly.

For instance, one can view a high-dimensional vector space as a state space for a system with many degrees of freedom. A megapixel image, for instance, is a point in a million-dimensional vector space; by varying the image, one can explore the space, and various subsets of this space correspond to various classes of images.

One can similarly interpret sound waves, a box of gases, an ecosystem, a voting population, a stream of digital data, trials of random variables, the results of a statistical survey, a probabilistic strategy in a two-player game, and many other concrete objects as states in a high-dimensional vector space, and various basic concepts such as convexity, distance, linearity, change of variables, orthogonality, or inner product can have very natural meanings in some of these models (though not in all).

It can take a bit of both theory and practice to merge one's intuition for these things with one's spatial intuition for vectors and vector spaces, but it can be done eventually (much as after one has enough exposure to measure theory, one can start merging one's intuition regarding cardinality, mass, length, volume, probability, cost, charge, and any number of other "real-life" measures).

For instance, the fact that most of the mass of a unit ball in high dimensions lurks near the boundary of the ball can be interpreted as a manifestation of the law of large numbers, using the interpretation of a high-dimensional vector space as the state space for a large number of trials of a random variable.

More generally, many facts about low-dimensional projections or slices of high-dimensional objects can be viewed from a probabilistic, statistical, or signal processing perspective.

Scott Aaronson:
Here are some of the crutches I've relied on. (Admittedly, my crutches are probably much more useful for theoretical computer science, combinatorics, and probability than they are for geometry, topology, or physics. On a related note, I personally have a much easier time thinking about R^n than about, say, R^4 or R^5!)

1. If you're trying to visualize some 4D phenomenon P, first think of a related 3D phenomenon P', and then imagine yourself as a 2D being who's trying to visualize P'. The advantage is that, unlike with the 4D vs. 3D case, you yourself can easily switch between the 3D and 2D perspectives, and can therefore get a sense of exactly what information is being lost when you drop a dimension. (You could call this the "Flatland trick," after the most famous literary work to rely on it.)
2. As someone else mentioned, discretize! Instead of thinking about R^n, think about the Boolean hypercube {0,1}^n, which is finite and usually easier to get intuition about. (When working on problems, I often find myself drawing {0,1}^4 on a sheet of paper by drawing two copies of {0,1}^3 and then connecting the corresponding vertices.)
3. Instead of thinking about a subset S⊆R^n, think about its characteristic function f:R^n→{0,1}. I don't know why that trivial perspective switch makes such a big difference, but it does ... maybe because it shifts your attention to the process of computing f, and makes you forget about the hopeless task of visualizing S!
4. One of the central facts about R^n is that, while it has "room" for only n orthogonal vectors, it has room for exp⁡(n) almost-orthogonal vectors. Internalize that one fact, and so many other properties of R^n (for example, that the n-sphere resembles a "ball with spikes sticking out," as someone mentioned before) will suddenly seem non-mysterious. In turn, one way to internalize the fact that R^n has so many almost-orthogonal vectors is to internalize Shannon's theorem that there exist good error-correcting codes.
5. To get a feel for some high-dimensional object, ask questions about the behavior of a process that takes place on that object. For example: if I drop a ball here, which local minimum will it settle into? How long does this random walk on {0,1}^n take to mix?

Gil Kalai:
This is a slightly different point, but Vitali Milman, who works in high-dimensional convexity, likes to draw high-dimensional convex bodies in a non-convex way. This is to convey the point that if you take the convex hull of a few points on the unit sphere of R^n, then for large n very little of the measure of the convex body is anywhere near the corners, so in a certain sense the body is a bit like a small sphere with long thin "spikes".
q-n-a  intuition  math  visual-understanding  list  discussion  thurston  tidbits  aaronson  tcs  geometry  problem-solving  yoga  👳  big-list  metabuch  tcstariat  gowers  mathtariat  acm  overflow  soft-question  levers  dimensionality  hi-order-bits  insight  synthesis  thinking  models  cartoons  coding-theory  information-theory  probability  concentration-of-measure  magnitude  linear-algebra  boolean-analysis  analogy  arrows  lifts-projections  measure  markov  sampling  shannon  conceptual-vocab  nibble  degrees-of-freedom  worrydream  neurons  retrofit  oscillation  paradox  novelty  tricki  concrete  high-dimension  s:***  manifolds  direction  curvature  convexity-curvature  elegance  guessing 
december 2016 by nhaliday

bundles : abstractacademeacmframemath

related tags

aaronson  academia  accretion  accuracy  acm  acmtariat  advanced  algebra  algorithms  analogy  apollonian-dionysian  applications  approximation  arrows  article  atoms  automata-languages  axioms  bayesian  best-practices  big-list  big-picture  bio  biodet  bioinformatics  bits  boltzmann  books  boolean-analysis  brunn-minkowski  business  cartoons  causation  characterization  chart  checklists  chemistry  circuits  clever-rats  coding-theory  cog-psych  commentary  comparison  complex-systems  complexity  composition-decomposition  computation  computational-geometry  concentration-of-measure  concept  conceptual-vocab  concrete  confluence  convexity-curvature  correlation  counterexample  criminal-justice  cs  curiosity  curvature  data-science  decision-making  decision-theory  deep-learning  definition  degrees-of-freedom  density  dependence-independence  differential  dimensionality  direction  dirty-hands  discussion  distribution  duplication  economics  econotariat  efficiency  electromag  elegance  ems  ends-means  entropy-like  ergodic  essay  estimate  ethics  evolution  explanation  exposition  fermi  finiteness  flexibility  formal-values  fourier  frequency  garett-jones  geometry  giants  gowers  graph-theory  graphical-models  graphs  growth  guessing  GWAS  gwern  hardware  hashing  hi-order-bits  high-dimension  history  homogeneity  hsu  hypothesis-testing  ideas  iidness  impact  impro  info-foraging  information-theory  init  inner-product  input-output  insight  interdisciplinary  intersection  intersection-connectedness  intuition  invariance  iteration-recursion  knowledge  language  lesswrong  letters  levers  lifts-projections  limits  linear-algebra  linearity  links  list  logic  machine-learning  macro  magnitude  manifolds  markov  martingale  math  math.CA  math.CO  math.DS  math.FA  math.GN  math.GR  math.MG  math.NT  math.RT  mathtariat  matrix-factorization  measure  mental-math  meta:math  meta:prediction  metabuch  metameta  methodology  metric-space  metrics  micro  mixing  model-class  models  mostly-modern  msr  multi  music-theory  mutation  nature  neuro  neuro-nitgrit  neurons  nibble  norms  novelty  numerics  optimization  org:bleg  oscillation  overflow  p:***  p:someday  papers  paradox  pdf  people  performance  philosophy  phys-energy  physics  pigeonhole-markov  plots  poast  positivity  pragmatic  pre-2013  prioritizing  probability  problem-solving  proofs  properties  psychology  q-n-a  quantum  quixotic  rationality  ratty  reading  recommendations  reddit  reduction  reference  regression  regularity  relativity  retention  retrofit  review  rigidity  roadmap  robust  s:*  s:**  s:***  sampling  scale  scholar-pack  science  scitariat  separation  series  shannon  signum  similarity  skeleton  smoothness  social  soft-question  sparsity  spatial  spectral  speed  ssc  stat-mech  stats  stochastic-processes  street-fighting  structure  studying  subculture  sublinear  survey  synthesis  tcs  tcstariat  technology  telos-atelos  thermo  thinking  thurston  tidbits  time  todo  toolkit  top-n  topology  track-record  tricki  turing  twitter  unit  variance-components  visual-understanding  von-neumann  wiki  world-war  worrydream  yoga  🌞  🎓  👳  🔬  🤖  🦉 

Copy this bookmark:



description:


tags: