nhaliday + acm + essay   4

Theory of Self-Reproducing Automata - John von Neumann
Fourth Lecture: THE ROLE OF HIGH AND OF EXTREMELY HIGH COMPLICATION

Comparisons between computing machines and the nervous systems. Estimates of size for computing machines, present and near future.

Estimates for size for the human central nervous system. Excursus about the “mixed” character of living organisms. Analog and digital elements. Observations about the “mixed” character of all componentry, artificial as well as natural. Interpretation of the position to be taken with respect to these.

Evaluation of the discrepancy in size between artificial and natural automata. Interpretation of this discrepancy in terms of physical factors. Nature of the materials used.

The probability of the presence of other intellectual factors. The role of complication and the theoretical penetration that it requires.

Questions of reliability and errors reconsidered. Probability of individual errors and length of procedure. Typical lengths of procedure for computing machines and for living organisms--that is, for artificial and for natural automata. Upper limits on acceptable probability of error in individual operations. Compensation by checking and self-correcting features.

Differences of principle in the way in which errors are dealt with in artificial and in natural automata. The “single error” principle in artificial automata. Crudeness of our approach in this case, due to the lack of adequate theory. More sophisticated treatment of this problem in natural automata: The role of the autonomy of parts. Connections between this autonomy and evolution.

- 10^10 neurons in brain, 10^4 vacuum tubes in largest computer at time
- machines faster: 5 ms from neuron potential to neuron potential, 10^-3 ms for vacuum tubes

https://en.wikipedia.org/wiki/John_von_Neumann#Computing
pdf  article  papers  essay  nibble  math  cs  computation  bio  neuro  neuro-nitgrit  scale  magnitude  comparison  acm  von-neumann  giants  thermo  phys-energy  speed  performance  time  density  frequency  hardware  ems  efficiency  dirty-hands  street-fighting  fermi  estimate  retention  physics  interdisciplinary  multi  wiki  links  people  🔬  atoms  duplication  iteration-recursion  turing  complexity  measure  nature  technology  complex-systems  bits  information-theory  circuits  robust  structure  composition-decomposition  evolution  mutation  axioms  analogy  thinking  input-output  hi-order-bits  coding-theory  flexibility  rigidity  automata-languages 
april 2018 by nhaliday
A Fervent Defense of Frequentist Statistics - Less Wrong
Short summary. This essay makes many points, each of which I think is worth reading, but if you are only going to understand one point I think it should be “Myth 5″ below, which describes the online learning framework as a response to the claim that frequentist methods need to make strong modeling assumptions. Among other things, online learning allows me to perform the following remarkable feat: if I’m betting on horses, and I get to place bets after watching other people bet but before seeing which horse wins the race, then I can guarantee that after a relatively small number of races, I will do almost as well overall as the best other person, even if the number of other people is very large (say, 1 billion), and their performance is correlated in complicated ways.

If you’re only going to understand two points, then also read about the frequentist version of Solomonoff induction, which is described in “Myth 6″.

...

If you are like me from, say, two years ago, you are firmly convinced that Bayesian methods are superior and that you have knockdown arguments in favor of this. If this is the case, then I hope this essay will give you an experience that I myself found life-altering: the experience of having a way of thinking that seemed unquestionably true slowly dissolve into just one of many imperfect models of reality. This experience helped me gain more explicit appreciation for the skill of viewing the world from many different angles, and of distinguishing between a very successful paradigm and reality.

If you are not like me, then you may have had the experience of bringing up one of many reasonable objections to normative Bayesian epistemology, and having it shot down by one of many “standard” arguments that seem wrong but not for easy-to-articulate reasons. I hope to lend some reprieve to those of you in this camp, by providing a collection of “standard” replies to these standard arguments.
bayesian  philosophy  stats  rhetoric  advice  debate  critique  expert  lesswrong  commentary  discussion  regularizer  essay  exposition  🤖  aphorism  spock  synthesis  clever-rats  ratty  hi-order-bits  top-n  2014  acmtariat  big-picture  acm  iidness  online-learning  lens  clarity  unit  nibble  frequentist  s:**  expert-experience  subjective-objective 
september 2016 by nhaliday

bundles : academeacmframemeta

related tags

acm  acmtariat  advice  analogy  aphorism  article  atoms  automata-languages  axioms  bayesian  big-picture  bio  bits  circuits  clarity  clever-rats  coding-theory  commentary  comparison  complex-systems  complexity  composition-decomposition  compressed-sensing  computation  critique  cs  debate  density  dirty-hands  discussion  duplication  efficiency  ems  epistemic  essay  estimate  evolution  expert  expert-experience  exposition  fermi  flexibility  frequency  frequentist  giants  gowers  hardware  hi-order-bits  hn  IEEE  iidness  info-dynamics  information-theory  input-output  interdisciplinary  iteration-recursion  lens  lesswrong  links  magnitude  math  mathtariat  measure  meta:research  multi  mutation  nature  neuro  neuro-nitgrit  nibble  norms  online-learning  optimization  org:bleg  papers  pdf  people  performance  philosophy  phys-energy  physics  ratty  reflection  regularizer  retention  rhetoric  rigidity  robust  s:**  scale  science  shannon  sparsity  speed  spock  stats  street-fighting  structure  subjective-objective  synthesis  technology  the-trenches  thermo  thinking  time  top-n  turing  unit  von-neumann  wiki  🔬  🤖 

Copy this bookmark:



description:


tags: