nhaliday + acm + concept   92

Solution concept - Wikipedia
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.

Many solution concepts, for many games, will result in more than one solution. This puts any one of the solutions in doubt, so a game theorist may apply a refinement to narrow down the solutions. Each successive solution concept presented in the following improves on its predecessor by eliminating implausible equilibria in richer games.

nice diagram
concept  conceptual-vocab  list  wiki  reference  acm  game-theory  inference  equilibrium  extrema  reduction  sub-super 
12 weeks ago by nhaliday
Prisoner's dilemma - Wikipedia
caveat to result below:
An extension of the IPD is an evolutionary stochastic IPD, in which the relative abundance of particular strategies is allowed to change, with more successful strategies relatively increasing. This process may be accomplished by having less successful players imitate the more successful strategies, or by eliminating less successful players from the game, while multiplying the more successful ones. It has been shown that unfair ZD strategies are not evolutionarily stable. The key intuition is that an evolutionarily stable strategy must not only be able to invade another population (which extortionary ZD strategies can do) but must also perform well against other players of the same type (which extortionary ZD players do poorly, because they reduce each other's surplus).[14]

Theory and simulations confirm that beyond a critical population size, ZD extortion loses out in evolutionary competition against more cooperative strategies, and as a result, the average payoff in the population increases when the population is bigger. In addition, there are some cases in which extortioners may even catalyze cooperation by helping to break out of a face-off between uniform defectors and win–stay, lose–switch agents.[8]

https://alfanl.com/2018/04/12/defection/
Nature boils down to a few simple concepts.

Haters will point out that I oversimplify. The haters are wrong. I am good at saying a lot with few words. Nature indeed boils down to a few simple concepts.

In life, you can either cooperate or defect.

Used to be that defection was the dominant strategy, say in the time when the Roman empire started to crumble. Everybody complained about everybody and in the end nothing got done. Then came Jesus, who told people to be loving and cooperative, and boom: 1800 years later we get the industrial revolution.

Because of Jesus we now find ourselves in a situation where cooperation is the dominant strategy. A normie engages in a ton of cooperation: with the tax collector who wants more and more of his money, with schools who want more and more of his kid’s time, with media who wants him to repeat more and more party lines, with the Zeitgeist of the Collective Spirit of the People’s Progress Towards a New Utopia. Essentially, our normie is cooperating himself into a crumbling Western empire.

Turns out that if everyone blindly cooperates, parasites sprout up like weeds until defection once again becomes the standard.

The point of a post-Christian religion is to once again create conditions for the kind of cooperation that led to the industrial revolution. This necessitates throwing out undead Christianity: you do not blindly cooperate. You cooperate with people that cooperate with you, you defect on people that defect on you. Christianity mixed with Darwinism. God and Gnon meet.

This also means we re-establish spiritual hierarchy, which, like regular hierarchy, is a prerequisite for cooperation. It is this hierarchical cooperation that turns a household into a force to be reckoned with, that allows a group of men to unite as a front against their enemies, that allows a tribe to conquer the world. Remember: Scientology bullied the Cathedral’s tax department into submission.

With a functioning hierarchy, men still gossip, lie and scheme, but they will do so in whispers behind closed doors. In your face they cooperate and contribute to the group’s wellbeing because incentives are thus that contributing to group wellbeing heightens status.

Without a functioning hierarchy, men gossip, lie and scheme, but they do so in your face, and they tell you that you are positively deluded for accusing them of gossiping, lying and scheming. Seeds will not sprout in such ground.

Spiritual dominance is established in the same way any sort of dominance is established: fought for, taken. But the fight is ritualistic. You can’t force spiritual dominance if no one listens, or if you are silenced the ritual is not allowed to happen.

If one of our priests is forbidden from establishing spiritual dominance, that is a sure sign an enemy priest is in better control and has vested interest in preventing you from establishing spiritual dominance..

They defect on you, you defect on them. Let them suffer the consequences of enemy priesthood, among others characterized by the annoying tendency that very little is said with very many words.

https://contingentnotarbitrary.com/2018/04/14/rederiving-christianity/
To recap, we started with a secular definition of Logos and noted that its telos is existence. Given human nature, game theory and the power of cooperation, the highest expression of that telos is freely chosen universal love, tempered by constant vigilance against defection while maintaining compassion for the defectors and forgiving those who repent. In addition, we must know the telos in order to fulfill it.

In Christian terms, looks like we got over half of the Ten Commandments (know Logos for the First, don’t defect or tempt yourself to defect for the rest), the importance of free will, the indestructibility of evil (group cooperation vs individual defection), loving the sinner and hating the sin (with defection as the sin), forgiveness (with conditions), and love and compassion toward all, assuming only secular knowledge and that it’s good to exist.

Iterated Prisoner's Dilemma is an Ultimatum Game: http://infoproc.blogspot.com/2012/07/iterated-prisoners-dilemma-is-ultimatum.html
The history of IPD shows that bounded cognition prevented the dominant strategies from being discovered for over over 60 years, despite significant attention from game theorists, computer scientists, economists, evolutionary biologists, etc. Press and Dyson have shown that IPD is effectively an ultimatum game, which is very different from the Tit for Tat stories told by generations of people who worked on IPD (Axelrod, Dawkins, etc., etc.).

...

For evolutionary biologists: Dyson clearly thinks this result has implications for multilevel (group vs individual selection):
... Cooperation loses and defection wins. The ZD strategies confirm this conclusion and make it sharper. ... The system evolved to give cooperative tribes an advantage over non-cooperative tribes, using punishment to give cooperation an evolutionary advantage within the tribe. This double selection of tribes and individuals goes way beyond the Prisoners' Dilemma model.

implications for fractionalized Europe vis-a-vis unified China?

and more broadly does this just imply we're doomed in the long run RE: cooperation, morality, the "good society", so on...? war and group-selection is the only way to get a non-crab bucket civilization?

Iterated Prisoner’s Dilemma contains strategies that dominate any evolutionary opponent:
http://www.pnas.org/content/109/26/10409.full
http://www.pnas.org/content/109/26/10409.full.pdf
https://www.edge.org/conversation/william_h_press-freeman_dyson-on-iterated-prisoners-dilemma-contains-strategies-that

https://en.wikipedia.org/wiki/Ultimatum_game

analogy for ultimatum game: the state gives the demos a bargain take-it-or-leave-it, and...if the demos refuses...violence?

The nature of human altruism: http://sci-hub.tw/https://www.nature.com/articles/nature02043
- Ernst Fehr & Urs Fischbacher

Some of the most fundamental questions concerning our evolutionary origins, our social relations, and the organization of society are centred around issues of altruism and selfishness. Experimental evidence indicates that human altruism is a powerful force and is unique in the animal world. However, there is much individual heterogeneity and the interaction between altruists and selfish individuals is vital to human cooperation. Depending on the environment, a minority of altruists can force a majority of selfish individuals to cooperate or, conversely, a few egoists can induce a large number of altruists to defect. Current gene-based evolutionary theories cannot explain important patterns of human altruism, pointing towards the importance of both theories of cultural evolution as well as gene–culture co-evolution.

...

Why are humans so unusual among animals in this respect? We propose that quantitatively, and probably even qualitatively, unique patterns of human altruism provide the answer to this question. Human altruism goes far beyond that which has been observed in the animal world. Among animals, fitness-reducing acts that confer fitness benefits on other individuals are largely restricted to kin groups; despite several decades of research, evidence for reciprocal altruism in pair-wise repeated encounters4,5 remains scarce6–8. Likewise, there is little evidence so far that individual reputation building affects cooperation in animals, which contrasts strongly with what we find in humans. If we randomly pick two human strangers from a modern society and give them the chance to engage in repeated anonymous exchanges in a laboratory experiment, there is a high probability that reciprocally altruistic behaviour will emerge spontaneously9,10.

However, human altruism extends far beyond reciprocal altruism and reputation-based cooperation, taking the form of strong reciprocity11,12. Strong reciprocity is a combination of altruistic rewarding, which is a predisposition to reward others for cooperative, norm-abiding behaviours, and altruistic punishment, which is a propensity to impose sanctions on others for norm violations. Strong reciprocators bear the cost of rewarding or punishing even if they gain no individual economic benefit whatsoever from their acts. In contrast, reciprocal altruists, as they have been defined in the biological literature4,5, reward and punish only if this is in their long-term self-interest. Strong reciprocity thus constitutes a powerful incentive for cooperation even in non-repeated interactions and when reputation gains are absent, because strong reciprocators will reward those who cooperate and punish those who defect.

...

We will show that the interaction between selfish and strongly reciprocal … [more]
concept  conceptual-vocab  wiki  reference  article  models  GT-101  game-theory  anthropology  cultural-dynamics  trust  cooperate-defect  coordination  iteration-recursion  sequential  axelrod  discrete  smoothness  evolution  evopsych  EGT  economics  behavioral-econ  sociology  new-religion  deep-materialism  volo-avolo  characterization  hsu  scitariat  altruism  justice  group-selection  decision-making  tribalism  organizing  hari-seldon  theory-practice  applicability-prereqs  bio  finiteness  multi  history  science  social-science  decision-theory  commentary  study  summary  giants  the-trenches  zero-positive-sum  🔬  bounded-cognition  info-dynamics  org:edge  explanation  exposition  org:nat  eden  retention  long-short-run  darwinian  markov  equilibrium  linear-algebra  nitty-gritty  competition  war  explanans  n-factor  europe  the-great-west-whale  occident  china  asia  sinosphere  orient  decentralized  markets  market-failure  cohesion  metabuch  stylized-facts  interdisciplinary  physics  pdf  pessimism  time  insight  the-basilisk  noblesse-oblige  the-watchers  ideas  l 
march 2018 by nhaliday
Stein's example - Wikipedia
Stein's example (or phenomenon or paradox), in decision theory and estimation theory, is the phenomenon that when three or more parameters are estimated simultaneously, there exist combined estimators more accurate on average (that is, having lower expected mean squared error) than any method that handles the parameters separately. It is named after Charles Stein of Stanford University, who discovered the phenomenon in 1955.[1]

An intuitive explanation is that optimizing for the mean-squared error of a combined estimator is not the same as optimizing for the errors of separate estimators of the individual parameters. In practical terms, if the combined error is in fact of interest, then a combined estimator should be used, even if the underlying parameters are independent; this occurs in channel estimation in telecommunications, for instance (different factors affect overall channel performance). On the other hand, if one is instead interested in estimating an individual parameter, then using a combined estimator does not help and is in fact worse.

...

Many simple, practical estimators achieve better performance than the ordinary estimator. The best-known example is the James–Stein estimator, which works by starting at X and moving towards a particular point (such as the origin) by an amount inversely proportional to the distance of X from that point.
nibble  concept  levers  wiki  reference  acm  stats  probability  decision-theory  estimate  distribution  atoms 
february 2018 by nhaliday
Sequence Modeling with CTC
A visual guide to Connectionist Temporal Classification, an algorithm used to train deep neural networks in speech recognition, handwriting recognition and other sequence problems.
acmtariat  techtariat  org:bleg  nibble  better-explained  machine-learning  deep-learning  visual-understanding  visualization  analysis  let-me-see  research  sequential  audio  classification  model-class  exposition  language  acm  approximation  comparison  markov  iteration-recursion  concept  atoms  distribution  orders  DP  heuristic  optimization  trees  greedy  matching  gradient-descent 
december 2017 by nhaliday
Analysis of variance - Wikipedia
Analysis of variance (ANOVA) is a collection of statistical models used to analyze the differences among group means and their associated procedures (such as "variation" among and between groups), developed by statistician and evolutionary biologist Ronald Fisher. In the ANOVA setting, the observed variance in a particular variable is partitioned into components attributable to different sources of variation. In its simplest form, ANOVA provides a statistical test of whether or not the means of several groups are equal, and therefore generalizes the t-test to more than two groups. ANOVAs are useful for comparing (testing) three or more means (groups or variables) for statistical significance. It is conceptually similar to multiple two-sample t-tests, but is more conservative (results in less type I error) and is therefore suited to a wide range of practical problems.

good pic: https://en.wikipedia.org/wiki/Analysis_of_variance#Motivating_example

tutorial by Gelman: http://www.stat.columbia.edu/~gelman/research/published/econanova3.pdf

so one way to think of partitioning the variance:
y_ij = alpha_i + beta_j + eps_ij
Var(y_ij) = Var(alpha_i) + Var(beta_j) + Cov(alpha_i, beta_j) + Var(eps_ij)
and alpha_i, beta_j are independent, so Cov(alpha_i, beta_j) = 0

can you make this work w/ interaction effects?
data-science  stats  methodology  hypothesis-testing  variance-components  concept  conceptual-vocab  thinking  wiki  reference  nibble  multi  visualization  visual-understanding  pic  pdf  exposition  lecture-notes  gelman  scitariat  tutorial  acm  ground-up  yoga 
july 2017 by nhaliday
Correlated Equilibria in Game Theory | Azimuth
Given this, it’s not surprising that Nash equilibria can be hard to find. Last September a paper came out making this precise, in a strong way:

• Yakov Babichenko and Aviad Rubinstein, Communication complexity of approximate Nash equilibria.

The authors show there’s no guaranteed method for players to find even an approximate Nash equilibrium unless they tell each other almost everything about their preferences. This makes finding the Nash equilibrium prohibitively difficult to find when there are lots of players… in general. There are particular games where it’s not difficult, and that makes these games important: for example, if you’re trying to run a government well. (A laughable notion these days, but still one can hope.)

Klarreich’s article in Quanta gives a nice readable account of this work and also a more practical alternative to the concept of Nash equilibrium. It’s called a ‘correlated equilibrium’, and it was invented by the mathematician Robert Aumann in 1974. You can see an attempt to define it here:
baez  org:bleg  nibble  mathtariat  commentary  summary  news  org:mag  org:sci  popsci  equilibrium  GT-101  game-theory  acm  conceptual-vocab  concept  definition  thinking  signaling  coordination  tcs  complexity  communication-complexity  lower-bounds  no-go  liner-notes  big-surf  papers  research  algorithmic-econ  volo-avolo 
july 2017 by nhaliday
Unsupervised learning, one notion or many? – Off the convex path
(Task A) Learning a distribution from samples. (Examples: gaussian mixtures, topic models, variational autoencoders,..)

(Task B) Understanding latent structure in the data. This is not the same as (a); for example principal component analysis, clustering, manifold learning etc. identify latent structure but don’t learn a distribution per se.

(Task C) Feature Learning. Learn a mapping from datapoint → feature vector such that classification tasks are easier to carry out on feature vectors rather than datapoints. For example, unsupervised feature learning could help lower the amount of labeled samples needed for learning a classifier, or be useful for domain adaptation.

Task B is often a subcase of Task C, as the intended user of “structure found in data” are humans (scientists) who pour over the representation of data to gain some intuition about its properties, and these “properties” can be often phrased as a classification task.

This post explains the relationship between Tasks A and C, and why they get mixed up in students’ mind. We hope there is also some food for thought here for experts, namely, our discussion about the fragility of the usual “perplexity” definition of unsupervised learning. It explains why Task A doesn’t in practice lead to good enough solution for Task C. For example, it has been believed for many years that for deep learning, unsupervised pretraining should help supervised training, but this has been hard to show in practice.
acmtariat  org:bleg  nibble  machine-learning  acm  thinking  clarity  unsupervised  conceptual-vocab  concept  explanation  features  bayesian  off-convex  deep-learning  latent-variables  generative  intricacy  distribution  sampling 
june 2017 by nhaliday
Pearson correlation coefficient - Wikipedia
https://en.wikipedia.org/wiki/Coefficient_of_determination
what does this mean?: https://twitter.com/GarettJones/status/863546692724858880
deleted but it was about the Pearson correlation distance: 1-r
I guess it's a metric

https://en.wikipedia.org/wiki/Explained_variation

http://infoproc.blogspot.com/2014/02/correlation-and-variance.html
A less misleading way to think about the correlation R is as follows: given X,Y from a standardized bivariate distribution with correlation R, an increase in X leads to an expected increase in Y: dY = R dX. In other words, students with +1 SD SAT score have, on average, roughly +0.4 SD college GPAs. Similarly, students with +1 SD college GPAs have on average +0.4 SAT.

this reminds me of the breeder's equation (but it uses r instead of h^2, so it can't actually be the same)

https://www.reddit.com/r/slatestarcodex/comments/631haf/on_the_commentariat_here_and_why_i_dont_think_i/dfx4e2s/
stats  science  hypothesis-testing  correlation  metrics  plots  regression  wiki  reference  nibble  methodology  multi  twitter  social  discussion  best-practices  econotariat  garett-jones  concept  conceptual-vocab  accuracy  causation  acm  matrix-factorization  todo  explanation  yoga  hsu  street-fighting  levers  🌞  2014  scitariat  variance-components  meta:prediction  biodet  s:**  mental-math  reddit  commentary  ssc  poast  gwern  data-science  metric-space  similarity  measure  dependence-independence 
may 2017 by nhaliday
Beta function - Wikipedia
B(x, y) = int_0^1 t^{x-1}(1-t)^{y-1} dt = Γ(x)Γ(y)/Γ(x+y)
one misc. application: calculating pdf of Erlang distribution (sum of iid exponential r.v.s)
concept  atoms  acm  math  calculation  integral  wiki  reference  identity  AMT  distribution  multiplicative 
march 2017 by nhaliday
Mixing (mathematics) - Wikipedia
One way to describe this is that strong mixing implies that for any two possible states of the system (realizations of the random variable), when given a sufficient amount of time between the two states, the occurrence of the states is independent.

Mixing coefficient is
α(n) = sup{|P(A∪B) - P(A)P(B)| : A in σ(X_0, ..., X_{t-1}), B in σ(X_{t+n}, ...), t >= 0}
for σ(...) the sigma algebra generated by those r.v.s.

So it's a notion of total variational distance between the true distribution and the product distribution.
concept  math  acm  physics  probability  stochastic-processes  definition  mixing  iidness  wiki  reference  nibble  limits  ergodic  math.DS  measure  dependence-independence 
february 2017 by nhaliday
Barrier function - Wikipedia
In constrained optimization, a field of mathematics, a barrier function is a continuous function whose value on a point increases to infinity as the point approaches the boundary of the feasible region of an optimization problem.[1] Such functions are used to replace inequality constraints by a penalizing term in the objective function that is easier to handle.
math  acm  concept  optimization  singularity  smoothness  relaxation  wiki  reference  regularization  math.CA  nibble 
february 2017 by nhaliday
Galton–Watson process - Wikipedia
The Galton–Watson process is a branching stochastic process arising from Francis Galton's statistical investigation of the extinction of family names. The process models family names as patrilineal (passed from father to son), while offspring are randomly either male or female, and names become extinct if the family name line dies out (holders of the family name die without male descendants). This is an accurate description of Y chromosome transmission in genetics, and the model is thus useful for understanding human Y-chromosome DNA haplogroups, and is also of use in understanding other processes (as described below); but its application to actual extinction of family names is fraught. In practice, family names change for many other reasons, and dying out of name line is only one factor, as discussed in examples, below; the Galton–Watson process is thus of limited applicability in understanding actual family name distributions.
galton  history  stories  stats  stochastic-processes  acm  concept  wiki  reference  atoms  giants  early-modern  nibble  old-anglo  pre-ww2 
january 2017 by nhaliday
Existence of the moment generating function and variance - Cross Validated
This question provides a nice opportunity to collect some facts on moment-generating functions (mgf).

In the answer below, we do the following:
1. Show that if the mgf is finite for at least one (strictly) positive value and one negative value, then all positive moments of X are finite (including nonintegral moments).
2. Prove that the condition in the first item above is equivalent to the distribution of X having exponentially bounded tails. In other words, the tails of X fall off at least as fast as those of an exponential random variable Z (up to a constant).
3. Provide a quick note on the characterization of the distribution by its mgf provided it satisfies the condition in item 1.
4. Explore some examples and counterexamples to aid our intuition and, particularly, to show that we should not read undue importance into the lack of finiteness of the mgf.
q-n-a  overflow  math  stats  acm  probability  characterization  concept  moments  distribution  examples  counterexample  tails  rigidity  nibble  existence  s:null  convergence  series 
january 2017 by nhaliday
Breeding the breeder's equation - Gene Expression
- interesting fact about normal distribution: when thresholding Gaussian r.v. X ~ N(0, σ^2) at X > 0, the new mean μ_s satisfies μ_s = pdf(X,t)/(1-cdf(X,t)) σ^2
- follows from direct calculation (any deeper reason?)
- note (using Taylor/asymptotic expansion of complementary error function) that this is Θ(t) as t -> 0 or ∞ (w/ different constants)
- for X ~ N(0, 1), can calculate 0 = cdf(X, t)μ_<t + (1-cdf(X, t))μ_>t => μ_<t = -pdf(X, t)/cdf(X, t)
- this declines quickly w/ t (like e^{-t^2/2}). as t -> 0, it goes like -sqrt(2/pi) + higher-order terms ~ -0.8.

Average of a tail of a normal distribution: https://stats.stackexchange.com/questions/26805/average-of-a-tail-of-a-normal-distribution

Truncated normal distribution: https://en.wikipedia.org/wiki/Truncated_normal_distribution
gnxp  explanation  concept  bio  genetics  population-genetics  agri-mindset  analysis  scitariat  org:sci  nibble  methodology  distribution  tidbits  probability  stats  acm  AMT  limits  magnitude  identity  integral  street-fighting  symmetry  s:*  tails  multi  q-n-a  overflow  wiki  reference  objektbuch  proofs 
december 2016 by nhaliday
Borel–Cantelli lemma - Wikipedia
- sum of probabilities finite => a.s. only finitely many occur
- "<=" w/ some assumptions (pairwise independence)
- classic result from CS 150 (problem set 1)
wiki  reference  estimate  probability  math  acm  concept  levers  probabilistic-method  limits  nibble  borel-cantelli 
november 2016 by nhaliday
Binary option - Wikipedia, the free encyclopedia
contains some discussion of Black-Scholes valuation process
acm  finance  yoga  wiki  concept  reference  nibble 
september 2016 by nhaliday
Dirichlet process - Wikipedia, the free encyclopedia
In probability theory, Dirichlet processes (after Peter Gustav Lejeune Dirichlet) are a family of stochastic processes whose realizations are probability distributions. In other words, a Dirichlet process is a probability distribution whose range is itself a set of probability distributions. It is often used in Bayesian inference to describe the prior knowledge about the distribution of random variables—how likely it is that the random variables are distributed according to one or another particular distribution.
probability  stats  wiki  reference  concept  acm  distribution  bayesian  simplex  nibble 
june 2016 by nhaliday
« earlier      
per page:    204080120160

bundles : academeacmframemeta

related tags

academia  accuracy  acm  acmtariat  advanced  adversarial  agri-mindset  agriculture  algorithmic-econ  algorithms  alignment  altruism  AMT  analogy  analysis  analytical-holistic  anthropology  antiquity  apollonian-dionysian  applicability-prereqs  applications  approximation  arrows  article  ascetic  asia  atoms  audio  automata-languages  axelrod  backup  baez  bare-hands  bayesian  behavioral-econ  behavioral-gen  ben-recht  benchmarks  berkeley  best-practices  better-explained  bias-variance  big-picture  big-surf  bio  biodet  bioinformatics  bits  boltzmann  boolean-analysis  borel-cantelli  bounded-cognition  brexit  britain  broad-econ  calculation  causation  characterization  charity  chart  cheatsheet  checklists  china  christianity  clarity  classification  clever-rats  coarse-fine  coding-theory  cohesion  commentary  communication-complexity  comparison  competition  complex-systems  complexity  composition-decomposition  compressed-sensing  computational-geometry  concentration-of-measure  concept  conceptual-vocab  conference  confluence  confusion  conquest-empire  contrarianism  convergence  convexity-curvature  cooperate-defect  coordination  correlation  cost-benefit  counterexample  course  cracker-econ  critique  cultural-dynamics  curiosity  curvature  cybernetics  cycles  darwinian  data-science  dataviz  debate  debt  decentralized  decision-making  decision-theory  deep-learning  deep-materialism  definition  degrees-of-freedom  density  dependence-independence  descriptive  detail-architecture  differential  dimensionality  discovery  discrete  discussion  distribution  diversity  domestication  DP  duality  dumb-ML  dynamic  dynamical  early-modern  ecology  economics  econotariat  eden  EEA  egalitarianism-hierarchy  EGT  elections  elite  emotion  empirical  endo-exo  endogenous-exogenous  ends-means  ensembles  entropy-like  envy  equilibrium  ergodic  eric-kaufmann  error  estimate  europe  events  evolution  evopsych  examples  existence  expert  expert-experience  explanans  explanation  exploratory  exposition  extrema  farmers-and-foragers  features  finance  finiteness  flexibility  formal-values  fourier  free-riding  frontier  galton  game-theory  garett-jones  gaussian-processes  GCTA  gelman  generalization  generative  genetics  genomics  geometry  giants  gnon  gnosis-logos  gnxp  gotchas  government  gowers  gradient-descent  graph-theory  graphical-models  graphs  greedy  ground-up  group-selection  GT-101  guide  guilt-shame  GWAS  gwern  hari-seldon  hashing  henrich  heuristic  hi-order-bits  history  hmm  hn  homepage  homogeneity  honor  housing  hsu  hypothesis-testing  ideas  identity  ideology  idk  IEEE  iidness  illusion  impact  incentives  individualism-collectivism  industrial-revolution  inference  info-dynamics  information-theory  init  insight  integral  interdisciplinary  interests  interpretability  intersection  intersection-connectedness  intricacy  intuition  investing  iq  iron-age  iteration-recursion  iterative-methods  jargon  journos-pundits  judgement  justice  kernels  knowledge  language  large-factor  latent-variables  learning-theory  lecture-notes  lectures  let-me-see  levers  leviathan  limits  linear-algebra  linear-models  linearity  liner-notes  links  list  long-short-run  love-hate  lower-bounds  machine-learning  macro  magnitude  manifolds  marginal  marginal-rev  market-failure  markets  markov  martingale  matching  math  math.CA  math.CO  math.CV  math.DS  math.GN  mathtariat  matrix-factorization  measure  medieval  mediterranean  mental-math  meta:math  meta:prediction  meta:rhetoric  metabuch  metameta  methodology  metric-space  metrics  michael-jordan  mihai  mixing  ML-MAP-E  model-class  models  moments  monte-carlo  mostly-modern  motivation  multi  multiplicative  n-factor  network-structure  new-religion  news  nibble  nietzschean  nips  nitty-gritty  nlp  no-go  noblesse-oblige  noise-structure  nonlinearity  nonparametric  number  numerics  objektbuch  occam  occident  off-convex  old-anglo  oly  online-learning  openai  operational  optimization  order-disorder  orders  ORFE  org:bleg  org:edge  org:edu  org:mag  org:mat  org:nat  org:sci  organizing  orient  oscillation  outcome-risk  outliers  overflow  p:***  p:someday  PAC  papers  parasites-microbiome  parsimony  patho-altruism  pdf  peace-violence  perturbation  pessimism  phase-transition  philosophy  phys-energy  physics  pic  pigeonhole-markov  piracy  plots  poast  polisci  polynomials  popsci  population  population-genetics  postmortem  power-law  pragmatic  pre-2013  pre-ww2  preprint  presentation  princeton  prioritizing  priors-posteriors  probabilistic-method  probability  problem-solving  proofs  properties  prudence  public-goodish  putnam-like  q-n-a  qra  quixotic  random  ranking  ratty  reading  realness  reddit  reduction  reference  reflection  regression  regression-to-mean  regularization  regularizer  regulation  reinforcement  relaxation  religion  replication  reputation  research  research-program  retention  rhetoric  rigidity  rigor  risk  ritual  roadmap  robust  roots  rot  rounding  s:*  s:**  s:***  s:null  sample-complexity  sampling  sanjeev-arora  sapiens  scale  scholar-pack  science  scitariat  SDP  search  selection  self-interest  sensitivity  sequential  series  shalizi  signal-noise  signaling  similarity  simplex  simplification  singularity  sinosphere  skeleton  slides  smoothness  social  social-norms  social-science  sociality  sociology  soft-question  sparsity  spatial  spearhead  spectral  ssc  stanford  stat-mech  stats  stochastic-processes  stories  strategy  stream  street-fighting  structure  study  studying  stylized-facts  sub-super  submodular  success  summary  symmetry  synthesis  systematic-ad-hoc  tails  talks  tcs  tcstariat  techtariat  telos-atelos  the-basilisk  the-classics  the-great-west-whale  the-trenches  the-watchers  theory-practice  theos  things  thinking  tidbits  tightness  time  todo  toolkit  top-n  topics  topology  track-record  tradeoffs  trees  tribalism  tricki  tricks  trust  truth  tutorial  twitter  unit  unsupervised  us-them  usa  values  vampire-squid  variance-components  vc-dimension  video  visual-understanding  visualization  volo-avolo  war  washington  waves  westminster  wiki  workshop  yoga  zero-positive-sum  🌞  🎓  👳  🔬 

Copy this bookmark:



description:


tags: