relevance   1026

« earlier    

LinkedIn – What Does Brand Mean In 2019?
At the recent Brand Innovators Megatrends at CES, Jay Mandel was left pondering the question, "What does brand mean in 2019." He found wisdom in Brian Solis regarding relevance in an ever evolving world of innovation.
brand  innovation  innovators  megatrends  brian+solis  ces  relevance  brian  solis 
9 days ago by briansolis
Types are the basic tool of software design
Static or dynamic, a program's design is written in its types.
type  programming  theory  opinion  impact  relevance 
6 weeks ago by gilberto5757
The State of JavaScript 2018: Introduction
Discover the most popular JavaScript technologies of the year.
javascript  status  library  framework  diffusion  relevance  2018 
9 weeks ago by gilberto5757
Should you learn C to “learn how the computer works”?
I’ve often seen people suggest that you should learn C in order to learn how computers work. Is this a good idea? Is this accurate? I’m going to start with my conclusion right upfront, just to be crystal clear about what I’m saying here: C is not... | Steve Klabnik | “The most violent element in society is ignorance.” - Emma Goldman
clang  history  education  relevance  innerworking  computer 
october 2018 by gilberto5757
Click data as implicit relevance feedback in web search
Search sessions consist of a person presenting a query to a search engine, followed by that person examining the search results, selecting some of those search results for further review, possibly following some series of hyperlinks, and perhaps backtracking to previously viewed pages in the session. The series of pages selected for viewing in a search session, sometimes called the click data, is intuitively a source of relevance feedback information to the search engine. We are interested in how that relevance feedback can be used to improve the search results quality for all users, not just the current user. For example, the search engine could learn which documents are frequently visited when certain search queries are given.

In this article, we address three issues related to using click data as implicit relevance feedback: (1) How click data beyond the search results page might be more reliable than just the clicks from the search results page; (2) Whether we can further subselect from this click data to get even more reliable relevance feedback; and (3) How the reliability of click data for relevance feedback changes when the goal becomes finding one document for the user that completely meets their information needs (if possible). We refer to these documents as the ones that are strictly relevant to the query.

Our conclusions are based on empirical data from a live website with manual assessment of relevance. We found that considering all of the click data in a search session as relevance feedback has the potential to increase both precision and recall of the feedback data. We further found that, when the goal is identifying strictly relevant documents, that it could be useful to focus on last visited documents rather than all documents visited in a search session.
IR  relevance  LTR  click  data 
september 2018 by foodbaby
Have Static Languages Won? | Pointers Gone Wild
A few days ago, Elben Shira caught the attention of the programming blogosphere with his post entitled The End of Dynamic Languages. The key point from this post is in the following statement: This is my bet: the age of dynamic languages is over. There will be no new successful ones. Like him, I've noticed that despite…
static  language  relevance  programming  dynamic  hybrid 
august 2018 by gilberto5757

« earlier    

related tags

2016  2018  2019  academia  advertising  agents  ai  algolia  algorithm  algorithms  api  artificial-intelligence  authenticity  authority  autosuggest  bigdata  bm25  book  books  boosting  brand  brian+solis  brian  business  career  central  ces  china  clang  cliche  click  clickbait  cobol  collaboration  collective-intelligence  comparison  computer  consider:the-mangle  consumer  crowd  ctr  data  decentralised  development  diffusion  discovery  dl  dnn  dynamic  economy  edge  education  efficacy  elasticsearch  elixir  email  embeddings  empiricism  evaluation  evolution  expansion  facebook  favorites  feedback  file  filters  format  framework  function  future  gigeconomy  google  hand  haystackconf  hci  history  hybrid  impact  importance  inauthenticity  indexing  influence  information_retrieval  informationretrieval  innerworking  innovation  innovators  interactivepublishing  intro  ir  java  javascript  job  journalism  judgements  judgments  kaggle  language  library  logos  ltr  machine-learning  machinelearning  main  marketing  megatrends  microsoft  ml  mlt  mturk  music  navigation  neural  nlp  nn  nostalgia  onlineadvertising  opinion  optimization  organisations  papers  pdf  personalisation  personalization  predictive  programmer  programming  pseudo  psychoanalysis  python  quality  query-rewrite  query  rails  ranking  rating  re-ranking  redis  reformulation  relationships  reputation  rescore  review  reviews  rocchio  ruby  rubyonrails  rules  science  score  scoring  search  searchengine  semantic  services  slack  snapchat  social_networks  software  solis  solr  sourcing  spam  static  status  stories  strategy  suggest  technology  testing  theory  to-write-about  tool  tools  tuned  tuning  type  ux  vs  webdev  wechat  wiki  wikimedia  windows  wired  word  worldwide 

Copy this bookmark: