linear-algebra   1034

« earlier    

Gauss's Principle of Least Constraint
Gauss’s principle says that the behavior of a constrained system is as close as possible to the unconstrained behavior while satisfying the constraint.
physics  dynamics  mathematics  blog-posts  linear-algebra  optimization  constrained-optimization 
14 days ago by pash
Graphical Linear Algebra
Applications are open for the ACT Applied Category Theory Research School 2018! And because arithmetic science and geometric science are connected, and support one another, the full knowledge of numbers cannot be presented without encountering some geometry, or without seeing that operating in this way on numbers is close to geometry; the method is full…
maths  categorytheory  linear-algebra 
19 days ago by pmigdal
What exercises go best with 3 blue 1 brown's Linear Algebra videos? - LessWrong 2.0
3 blue 1 brown is a youtube channel that teaches math concepts. I've found it a
much better introduction than other resources I've looked at. The Essence of
series was particularly good.

But one issue is that, while the videos come with a few exercises sprinkled
within (typically one per concept), they don't come with enough to really check
whether I understand a thing.

Last year I tried...
learning  resource  linear-algebra 
21 days ago by sjmarshy
Low-Rank and Sparse Tools for Background Modeling and Subtraction in Videos
Low-Rank and Sparse Tools for Background Modeling and Subtraction in Videos - andrewssobral/lrslibrary
linear-algebra  pca 
24 days ago by yizhexu
Karl Rohe, Jun Tao, Xintian Han, Norbert Binkiewicz. "A Note on Quickly Sampling a Sparse Matrix with Low Rank Expectation ". Journal of Machine Learning Research 19(77):1−13, 2018.
Given matrices X,Y∈Rn×K and S∈RK×K with positive elements, this paper proposes an algorithm fastRG to sample a sparse matrix A with low rank expectation E(A)=XSYT and independent Poisson elements. This allows for quickly sampling from a broad class of stochastic blockmodel graphs (degree-corrected, mixed membership, overlapping) all of which are specific parameterizations of the generalized random product graph model defined in Section 2.2. The basic idea of fastRG is to first sample the number of edges m and then sample each edge. The key insight is that because of the the low rank expectation, it is easy to sample individual edges. The naive “element-wise” algorithm requires O(n2) operations to generate the n×n adjacency matrix A. In sparse graphs, where m=O(n), ignoring log terms, fastRG runs in time O(n). An implementation in R is available on github. A computational experiment in Section 2.4 simulates graphs up to n=10,000,000 nodes with m=100,000,000 edges. For example, on a graph with n=500,000 and m=5,000,000, fastRG runs in less than one second on a 3.5 GHz Intel i5.
4 weeks ago by quant18

« earlier    

related tags

!beyond-seven-review  !m-⚽-methods-data-analysis-bayesian-statistics  3d  abstract-math  academia  ai  algebra  algorithms  analysis  anki  applications  art  arxiv  berkeley  blas  blog-posts  book  books  bookstoread  calculus  categorytheory  cmu  code  computer-science  consider:representation  constrained-optimization  cool  course  courses  deep-learning-compiler  deep-learning  deeplearning  define-your-terms  dynamics  ebook  education  eigenvalue  eigenvalues  eigenvector  eigenvectors  facebook-open-source  facebook  free  generative  geometry  gilbertstrang  gitlab  gradient-descent  graphblas  graphics-programming  graphics  grassmannian  high-performance-computing  hn  howto  immersive-maths  info-viz  interactive  julia  leaalbaugh  learning  linear  linear_algebra  linearalgebra  list  machine-learning  machinelearning  marxism  math  mathematics  maths  matrix-algebra  matrix  methodology  mit  ml  mooc  moocs  neural-networks  neuralnetwork  nlp  note-taking  nudge-targets  number-theory  numerics  numpy  online-courses  open  optimization  papers  pca  performance  physics  productivity  programming  python  quaternions  r  rather-interesting  recommendation-system  reference  reprtheory  resource  rust  self-study  sgd  socialism  sparse  stephen-boyd  strangeloop  strogatz  talks  textbook  textbooks  textiles  to-read  to-write-about  trigonometry  tutor  tutorial  vectors  video  videos  visual  visualization  wedge-product  youtube 

Copy this bookmark: