nhaliday + tutoring   14

Information Processing: US Needs a National AI Strategy: A Sputnik Moment?
FT podcasts on US-China competition and AI: http://infoproc.blogspot.com/2018/05/ft-podcasts-on-us-china-competition-and.html

A new recommended career path for effective altruists: China specialist: https://80000hours.org/articles/china-careers/
Our rough guess is that it would be useful for there to be at least ten people in the community with good knowledge in this area within the next few years.

By “good knowledge” we mean they’ve spent at least 3 years studying these topics and/or living in China.

We chose ten because that would be enough for several people to cover each of the major areas listed (e.g. 4 within AI, 2 within biorisk, 2 within foreign relations, 1 in another area).

AI Policy and Governance Internship: https://www.fhi.ox.ac.uk/ai-policy-governance-internship/

https://www.fhi.ox.ac.uk/deciphering-chinas-ai-dream/
https://www.fhi.ox.ac.uk/wp-content/uploads/Deciphering_Chinas_AI-Dream.pdf
Deciphering China’s AI Dream
The context, components, capabilities, and consequences of
China’s strategy to lead the world in AI

Europe’s AI delusion: https://www.politico.eu/article/opinion-europes-ai-delusion/
Brussels is failing to grasp threats and opportunities of artificial intelligence.
By BRUNO MAÇÃES

When the computer program AlphaGo beat the Chinese professional Go player Ke Jie in a three-part match, it didn’t take long for Beijing to realize the implications.

If algorithms can already surpass the abilities of a master Go player, it can’t be long before they will be similarly supreme in the activity to which the classic board game has always been compared: war.

As I’ve written before, the great conflict of our time is about who can control the next wave of technological development: the widespread application of artificial intelligence in the economic and military spheres.

...

If China’s ambitions sound plausible, that’s because the country’s achievements in deep learning are so impressive already. After Microsoft announced that its speech recognition software surpassed human-level language recognition in October 2016, Andrew Ng, then head of research at Baidu, tweeted: “We had surpassed human-level Chinese recognition in 2015; happy to see Microsoft also get there for English less than a year later.”

...

One obvious advantage China enjoys is access to almost unlimited pools of data. The machine-learning technologies boosting the current wave of AI expansion are as good as the amount of data they can use. That could be the number of people driving cars, photos labeled on the internet or voice samples for translation apps. With 700 or 800 million Chinese internet users and fewer data protection rules, China is as rich in data as the Gulf States are in oil.

How can Europe and the United States compete? They will have to be commensurately better in developing algorithms and computer power. Sadly, Europe is falling behind in these areas as well.

...

Chinese commentators have embraced the idea of a coming singularity: the moment when AI surpasses human ability. At that point a number of interesting things happen. First, future AI development will be conducted by AI itself, creating exponential feedback loops. Second, humans will become useless for waging war. At that point, the human mind will be unable to keep pace with robotized warfare. With advanced image recognition, data analytics, prediction systems, military brain science and unmanned systems, devastating wars might be waged and won in a matter of minutes.

...

The argument in the new strategy is fully defensive. It first considers how AI raises new threats and then goes on to discuss the opportunities. The EU and Chinese strategies follow opposite logics. Already on its second page, the text frets about the legal and ethical problems raised by AI and discusses the “legitimate concerns” the technology generates.

The EU’s strategy is organized around three concerns: the need to boost Europe’s AI capacity, ethical issues and social challenges. Unfortunately, even the first dimension quickly turns out to be about “European values” and the need to place “the human” at the center of AI — forgetting that the first word in AI is not “human” but “artificial.”

https://twitter.com/mr_scientism/status/983057591298351104
https://archive.is/m3Njh
US military: "LOL, China thinks it's going to be a major player in AI, but we've got all the top AI researchers. You guys will help us develop weapons, right?"

US AI researchers: "No."

US military: "But... maybe just a computer vision app."

US AI researchers: "NO."

https://www.theverge.com/2018/4/4/17196818/ai-boycot-killer-robots-kaist-university-hanwha
https://www.nytimes.com/2018/04/04/technology/google-letter-ceo-pentagon-project.html
https://twitter.com/mr_scientism/status/981685030417326080
https://archive.is/3wbHm
AI-risk was a mistake.
hsu  scitariat  commentary  video  presentation  comparison  usa  china  asia  sinosphere  frontier  technology  science  ai  speedometer  innovation  google  barons  deepgoog  stories  white-paper  strategy  migration  iran  human-capital  corporation  creative  alien-character  military  human-ml  nationalism-globalism  security  investing  government  games  deterrence  defense  nuclear  arms  competition  risk  ai-control  musk  optimism  multi  news  org:mag  europe  EU  80000-hours  effective-altruism  proposal  article  realness  offense-defense  war  biotech  altruism  language  foreign-lang  philosophy  the-great-west-whale  enhancement  foreign-policy  geopolitics  anglo  jobs  career  planning  hmm  travel  charity  tech  intel  media  teaching  tutoring  russia  india  miri-cfar  pdf  automation  class  labor  polisci  society  trust  n-factor  corruption  leviathan  ethics  authoritarianism  individualism-collectivism  revolution  economics  inequality  civic  law  regulation  data  scale  pro-rata  capital  zero-positive-sum  cooperate-defect  distribution  time-series  tre 
february 2018 by nhaliday
Deliberate Practice and Performance in Music, Games, Sports, Education, and Professions: A Meta-Analysis
We found that deliberate practice explained 26% of the variance in performance for games, 21% for music, 18% for sports, 4% for education, and less than 1% for professions. We conclude that deliberate practice is important, but not as important as has been argued.
pdf  study  psychology  cog-psych  social-psych  teaching  tutoring  learning  studying  stylized-facts  metabuch  career  long-term  music  games  sports  education  labor  data  list  expert-experience  ability-competence  roots  variance-components  top-n  meta-analysis  practice  quixotic 
december 2017 by nhaliday
Learn Difficult Concepts with the ADEPT Method – BetterExplained
Make explanations ADEPT: Use an Analogy, Diagram, Example, Plain-English description, and then a Technical description.
thinking  education  learning  teaching  tutoring  better-explained  analogy  visual-understanding  examples 
july 2016 by nhaliday
Teachers: Much More Than You Wanted To Know | Slate Star Codex
Random Thoughts on the Idiocy of VAM: https://educationrealist.wordpress.com/2016/05/20/random-thoughts-on-the-idiocy-of-vam/
Scott Alexander reviews the research on value-added measurement of teacher quality. While Scott’s overview is perfectly fine, any such effort is akin to a circa 1692 overview of the research literature on alchemy. Quantifying teacher quality will, I believe, be understood in those terms soon enough.

Value-Added and Social Desirability Bias, Bryan Caplan: http://econlog.econlib.org/archives/2016/09/value-added_and.html
The policy that dramatically passes the cost-benefit test is "deselection," better known as firing bad teachers.

What's up? I once again point my accusatory finger at Social Desirability Bias. Rewarding good teachers sounds a lot nicer than firing bad teachers. So when research comes along that potentially recommends both, pundits and politicians don't coolly crunch the numbers. They leap to the recommendation that's pleasing to the ear. So what if the original researchers find that firing bad teachers wins with flying colors? Move along folks, nothing to see here...
education  teaching  study  tutoring  yvain  essay  hmm  len:long  ssc  ratty  faq  marginal  chart  evidence-based  input-output  multi  critique  methodology  contrarianism  policy  len:short  econotariat  cracker-econ  org:econlib  biases  error 
may 2016 by nhaliday

bundles : ed

related tags

80000-hours  ability-competence  advice  age-generation  ai  ai-control  algorithms  alien-character  altruism  analogy  anarcho-tyranny  anglo  anglosphere  app  arms  article  asia  audio  authoritarianism  automation  backup  barons  behavioral-econ  better-explained  biases  big-peeps  biotech  books  britain  business  calculation  capital  career  charity  chart  china  civic  class  class-warfare  cog-psych  collaboration  coming-apart  commentary  community  comparison  compensation  competition  computer-vision  contrarianism  cool  cooperate-defect  corporation  corruption  counter-revolution  cracker-econ  creative  crime  criminology  critique  data  debate  deepgoog  defense  detail-architecture  deterrence  developing-world  dignity  discipline  discussion  distribution  divergence  econ-productivity  economics  econotariat  education  effective-altruism  egalitarianism-hierarchy  elegance  elite  embodied  enhancement  error  essay  estimate  ethics  EU  europe  evidence-based  examples  experiment  expert  expert-experience  explanation  faq  farmers-and-foragers  feynman  finance  foreign-lang  foreign-policy  form-design  forum  frontier  futurism  gallic  games  gender  gender-diff  geopolitics  giants  gnon  google  gotchas  government  growth-econ  hardware  hci  heuristic  higher-ed  hmm  hn  housing  hsu  human-capital  human-ml  hypocrisy  india  individualism-collectivism  inequality  info-foraging  init  innovation  input-output  instinct  intel  internet  interview  intuition  investing  ios  iran  japan  jobs  journos-pundits  labor  language  latin-america  law  learning  len:long  len:short  lens  leviathan  life-history  links  list  long-term  low-hanging  malaise  male-variability  management  managerial-state  marginal  marginal-rev  matching  math  measurement  mechanics  media  mediterranean  meta-analysis  metabuch  methodology  migration  military  miri-cfar  mobile  mobility  monetary-fiscal  multi  murray  music  musk  n-factor  nationalism-globalism  neurons  news  nibble  nl-and-so-can-you  nuclear  ocr  offense-defense  optimism  org:biz  org:econlib  org:lite  org:mag  org:rec  overflow  p:whenever  pdf  personality  philosophy  physics  planning  plt  podcast  policy  polisci  practice  prediction  presentation  privacy  pro-rata  programming  property-rights  proposal  psychology  q-n-a  quixotic  quotes  ranking  ratty  realness  redistribution  reference  regularizer  regulation  rent-seeking  review  revolution  risk  robotics  roots  rot  russia  scale  science  scitariat  security  sex  SIGGRAPH  sinosphere  slides  social  social-psych  social-science  society  software  speedometer  sports  ssc  stagnation  startups  state  stories  strategy  straussian  study  studying  stylized-facts  success  summary  sv  tactics  taxes  teaching  tech  technocracy  technology  temperance  texas  the-bones  the-classics  the-great-west-whale  the-world-is-just-atoms  thinking  time-series  tools  top-n  trade  travel  trends  trust  tutoring  twitter  unit  urban  urban-rural  usa  vampire-squid  variance-components  video  visual-understanding  visualization  war  welfare-state  west-hunter  white-paper  winner-take-all  world  worrydream  writing  yvain  zeitgeist  zero-positive-sum  🎩  🐸 

Copy this bookmark:



description:


tags: