nhaliday + meta:math   41

Origins of the brain networks for advanced mathematics in expert mathematicians
The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit.
pdf  study  psychology  cog-psych  neuro  language  math  learning  eden  meta:math  intelligence  visuo  spatial  visual-understanding  brain-scan  neuro-nitgrit  neurons  quantitative-qualitative  psych-architecture  🌞  retrofit 
february 2017 by nhaliday
Mikhail Leonidovich Gromov - Wikipedia
Gromov's style of geometry often features a "coarse" or "soft" viewpoint, analyzing asymptotic or large-scale properties.

Gromov is also interested in mathematical biology,[11] the structure of the brain and the thinking process, and the way scientific ideas evolve.[8]
math  people  giants  russia  differential  geometry  topology  math.GR  wiki  structure  meta:math  meta:science  interdisciplinary  bio  neuro  magnitude  limits  science  nibble  coarse-fine  wild-ideas  convergence  info-dynamics  ideas 
january 2017 by nhaliday
Soft analysis, hard analysis, and the finite convergence principle | What's new
It is fairly well known that the results obtained by hard and soft analysis respectively can be connected to each other by various “correspondence principles” or “compactness principles”. It is however my belief that the relationship between the two types of analysis is in fact much closer[3] than just this; in many cases, qualitative analysis can be viewed as a convenient abstraction of quantitative analysis, in which the precise dependencies between various finite quantities has been efficiently concealed from view by use of infinitary notation. Conversely, quantitative analysis can often be viewed as a more precise and detailed refinement of qualitative analysis. Furthermore, a method from hard analysis often has some analogue in soft analysis and vice versa, though the language and notation of the analogue may look completely different from that of the original. I therefore feel that it is often profitable for a practitioner of one type of analysis to learn about the other, as they both offer their own strengths, weaknesses, and intuition, and knowledge of one gives more insight[4] into the workings of the other. I wish to illustrate this point here using a simple but not terribly well known result, which I shall call the “finite convergence principle” (thanks to Ben Green for suggesting this name; Jennifer Chayes has also suggested the “metastability principle”). It is the finitary analogue of an utterly trivial infinitary result – namely, that every bounded monotone sequence converges – but sometimes, a careful analysis of a trivial result can be surprisingly revealing, as I hope to demonstrate here.
gowers  mathtariat  math  math.CA  expert  reflection  philosophy  meta:math  logic  math.CO  lens  big-picture  symmetry  limits  finiteness  nibble  org:bleg  coarse-fine  metameta  convergence  expert-experience 
january 2017 by nhaliday
ho.history overview - Proofs that require fundamentally new ways of thinking - MathOverflow
my favorite:
Although this has already been said elsewhere on MathOverflow, I think it's worth repeating that Gromov is someone who has arguably introduced more radical thoughts into mathematics than anyone else. Examples involving groups with polynomial growth and holomorphic curves have already been cited in other answers to this question. I have two other obvious ones but there are many more.

I don't remember where I first learned about convergence of Riemannian manifolds, but I had to laugh because there's no way I would have ever conceived of a notion. To be fair, all of the groundwork for this was laid out in Cheeger's thesis, but it was Gromov who reformulated everything as a convergence theorem and recognized its power.

Another time Gromov made me laugh was when I was reading what little I could understand of his book Partial Differential Relations. This book is probably full of radical ideas that I don't understand. The one I did was his approach to solving the linearized isometric embedding equation. His radical, absurd, but elementary idea was that if the system is sufficiently underdetermined, then the linear partial differential operator could be inverted by another linear partial differential operator. Both the statement and proof are for me the funniest in mathematics. Most of us view solving PDE's as something that requires hard work, involving analysis and estimates, and Gromov manages to do it using only elementary linear algebra. This then allows him to establish the existence of isometric embedding of Riemannian manifolds in a wide variety of settings.
q-n-a  overflow  soft-question  big-list  math  meta:math  history  insight  synthesis  gowers  mathtariat  hi-order-bits  frontier  proofs  magnitude  giants  differential  geometry  limits  flexibility  nibble  degrees-of-freedom  big-picture  novelty  zooming  big-surf  wild-ideas  metameta  courage  convergence  ideas  innovation  the-trenches  discovery  creative 
january 2017 by nhaliday
Thinking Outside One’s Paradigm | Academically Interesting
I think that as a scientist (or really, even as a citizen) it is important to be able to see outside one’s own paradigm. I currently think that I do a good job of this, but it seems to me that there’s a big danger of becoming more entrenched as I get older. Based on the above experiences, I plan to use the following test: When someone asks me a question about my field, how often have I not thought about it before? How tempted am I to say, “That question isn’t interesting”? If these start to become more common, then I’ll know something has gone wrong.
ratty  clever-rats  academia  science  interdisciplinary  lens  frontier  thinking  rationality  meta:science  curiosity  insight  scholar  innovation  reflection  acmtariat  water  biases  heterodox  🤖  🎓  aging  meta:math  low-hanging  big-picture  hi-order-bits  flexibility  org:bleg  nibble  the-trenches  wild-ideas  metameta  courage  s:**  discovery  context  embedded-cognition  endo-exo  near-far  🔬  info-dynamics  allodium  ideas  questions  within-without 
january 2017 by nhaliday
"Surely You're Joking, Mr. Feynman!": Adventures of a Curious Character ... - Richard P. Feynman - Google Books
Actually, there was a certain amount of genuine quality to my guesses. I had a scheme, which I still use today when somebody is explaining something that l’m trying to understand: I keep making up examples. For instance, the mathematicians would come in with a terrific theorem, and they’re all excited. As they’re telling me the conditions of the theorem, I construct something which fits all the conditions. You know, you have a set (one ball)—disjoint (two balls). Then the balls tum colors, grow hairs, or whatever, in my head as they put more conditions on. Finally they state the theorem, which is some dumb thing about the ball which isn’t true for my hairy green ball thing, so I say, “False!"
physics  math  feynman  thinking  empirical  examples  lens  intuition  operational  stories  metabuch  visual-understanding  thurston  hi-order-bits  geometry  topology  cartoons  giants  👳  nibble  the-trenches  metameta  meta:math  s:**  quotes  gbooks 
january 2017 by nhaliday
soft question - Thinking and Explaining - MathOverflow
- good question from Bill Thurston
- great answers by Terry Tao, fedja, Minhyong Kim, gowers, etc.

Terry Tao:
- symmetry as blurring/vibrating/wobbling, scale invariance
- anthropomorphization, adversarial perspective for estimates/inequalities/quantifiers, spending/economy

fedja walks through his though-process from another answer

Minhyong Kim: anthropology of mathematical philosophizing

Per Vognsen: normality as isotropy
comment: conjugate subgroup gHg^-1 ~ "H but somewhere else in G"

gowers: hidden things in basic mathematics/arithmetic
comment by Ryan Budney: x sin(x) via x -> (x, sin(x)), (x, y) -> xy
I kinda get what he's talking about but needed to use Mathematica to get the initial visualization down.
To remind myself later:
- xy can be easily visualized by juxtaposing the two parabolae x^2 and -x^2 diagonally
- x sin(x) can be visualized along that surface by moving your finger along the line (x, 0) but adding some oscillations in y direction according to sin(x)
q-n-a  soft-question  big-list  intuition  communication  teaching  math  thinking  writing  thurston  lens  overflow  synthesis  hi-order-bits  👳  insight  meta:math  clarity  nibble  giants  cartoons  gowers  mathtariat  better-explained  stories  the-trenches  problem-solving  homogeneity  symmetry  fedja  examples  philosophy  big-picture  vague  isotropy  reflection  spatial  ground-up  visual-understanding  polynomials  dimensionality  math.GR  worrydream  scholar  🎓  neurons  metabuch  yoga  retrofit  mental-math  metameta  wisdom  wordlessness  oscillation  operational  adversarial  quantifiers-sums  exposition  explanation  tricki  concrete  s:***  manifolds  invariance  dynamical  info-dynamics  cool  direction 
january 2017 by nhaliday
Answer to What is it like to understand advanced mathematics? - Quora
thinking like a mathematician

some of the points:
- small # of tricks (echoes Rota)
- web of concepts and modularization (zooming out) allow quick reasoning
- comfort w/ ambiguity and lack of understanding, study high-dimensional objects via projections
- above is essential for research (and often what distinguishes research mathematicians from people who were good at math, or majored in math)
math  reflection  thinking  intuition  expert  synthesis  wormholes  insight  q-n-a  🎓  metabuch  tricks  scholar  problem-solving  aphorism  instinct  heuristic  lens  qra  soft-question  curiosity  meta:math  ground-up  cartoons  analytical-holistic  lifts-projections  hi-order-bits  scholar-pack  nibble  giants  the-trenches  innovation  novelty  zooming  tricki  virtu  humility  metameta  wisdom  abstraction  skeleton  s:***  knowledge  expert-experience 
may 2016 by nhaliday

bundles : abstractmathmetametathinking

related tags

aaronson  abstraction  academia  acm  acmtariat  adversarial  advice  aesthetics  aging  algebra  allodium  analogy  analytical-holistic  aphorism  apollonian-dionysian  applications  approximation  arrows  atoms  automation  axioms  beauty  better-explained  biases  big-list  big-picture  big-surf  bio  boaz-barak  books  borjas  bounded-cognition  brain-scan  career  cartoons  chart  checklists  clarity  classic  clever-rats  cliometrics  coarse-fine  cog-psych  cold-war  commentary  communication  communism  complexity  composition-decomposition  computation  concept  conceptual-vocab  concrete  confluence  confusion  context  contradiction  convergence  convexity-curvature  cool  courage  creative  cs  culture  curiosity  curvature  data  deep-learning  definition  degrees-of-freedom  differential  dimensionality  direction  discovery  discussion  distribution  duality  duplication  dynamic  dynamical  eden  education  einstein  embedded-cognition  empirical  encyclopedic  endo-exo  ends-means  entropy-like  error  essay  estimate  examples  exocortex  expert  expert-experience  explanation  exposition  fedja  feynman  finiteness  flexibility  fourier  frontier  gbooks  geometry  giants  gowers  graph-theory  graphical-models  graphs  ground-up  hamming  hardness  heterodox  heuristic  hi-order-bits  high-variance  history  homogeneity  humility  ideas  impact  induction  inference  info-dynamics  innovation  insight  instinct  intelligence  interdisciplinary  intervention  intricacy  intuition  invariance  isotropy  janus  knowledge  language  learning  lecture-notes  len:long  lens  let-me-see  levers  lifts-projections  limits  linear-algebra  linearity  liner-notes  links  list  local-global  logic  low-hanging  machine-learning  magnitude  manifolds  martingale  math  math.AC  math.AG  math.AT  math.CA  math.CO  math.CT  math.GN  math.GR  mathtariat  matrix-factorization  meaningness  measure  mental-math  meta:math  meta:research  meta:science  metabuch  metameta  michael-nielsen  migration  model-class  mostly-modern  motivation  multi  narrative  near-far  neuro  neuro-nitgrit  neurons  nibble  notation  novelty  oly  operational  optimate  optimization  orders  org:bleg  org:edu  org:junk  org:mat  oscillation  overflow  p:***  p:null  p:someday  p:whenever  papers  pdf  people  philosophy  physics  pigeonhole-markov  polynomials  pragmatic  pre-2013  preprint  princeton  prioritizing  probability  problem-solving  productivity  proofs  psych-architecture  psychology  q-n-a  qra  quantifiers-sums  quantitative-qualitative  quantum  quantum-info  questions  quotes  rationality  ratty  reading  reason  reduction  reference  reflection  research  retrofit  rigor  roadmap  russia  s-factor  s:*  s:**  s:***  sanjeev-arora  scholar  scholar-pack  science  series  shannon  simulation  skeleton  smoothness  social  soft-question  spatial  spectral  stats  stochastic-processes  stories  strategy  structure  study  studying  success  summary  symmetry  synthesis  systematic-ad-hoc  tcs  tcstariat  teaching  techtariat  telos-atelos  the-trenches  thinking  thurston  tidbits  toolkit  top-n  topology  track-record  tradeoffs  tricki  tricks  unit  usa  vague  virtu  visual-understanding  visualization  visuo  water  wiki  wild-ideas  wisdom  within-without  wordlessness  wormholes  worrydream  writing  yoga  zooming  🌞  🎓  🎩  👳  🔬  🖥  🤖  🦉 

Copy this bookmark:



description:


tags: