nhaliday + math.ag   17

6.896: Essential Coding Theory
- probabilistic method and Chernoff bound for Shannon coding
- probabilistic method for asymptotically good Hamming codes (Gilbert coding)
- sparsity used for LDPC codes
mit  course  yoga  tcs  complexity  coding-theory  math.AG  fields  polynomials  pigeonhole-markov  linear-algebra  probabilistic-method  lecture-notes  bits  sparsity  concentration-of-measure  linear-programming  linearity  expanders  hamming  pseudorandomness  crypto  rigorous-crypto  communication-complexity  no-go  madhu-sudan  shannon  unit  p:** 
february 2017 by nhaliday
For potential Ph.D. students
Ravi Vakil's advice for PhD students

General advice:
Think actively about the creative process. A subtle leap is required from undergraduate thinking to active research (even if you have done undergraduate research). Think explicitly about the process, and talk about it (with me, and with others). For example, in an undergraduate class any Ph.D. student at Stanford will have tried to learn absolutely all the material flawlessly. But in order to know everything needed to tackle an important problem on the frontier of human knowledge, one would have to spend years reading many books and articles. So you'll have to learn differently. But how?

Don't be narrow and concentrate only on your particular problem. Learn things from all over the field, and beyond. The facts, methods, and insights from elsewhere will be much more useful than you might realize, possibly in your thesis, and most definitely afterwards. Being broad is a good way of learning to develop interesting questions.

When you learn the theory, you should try to calculate some toy cases, and think of some explicit basic examples.

Talk to other graduate students. A lot. Organize reading groups. Also talk to post-docs, faculty, visitors, and people you run into on the street. I learn the most from talking with other people. Maybe that's true for you too.

Specific topics:
- seminars
- giving talks
- writing
- links to other advice
advice  reflection  learning  thinking  math  phd  expert  stanford  grad-school  academia  insight  links  strategy  long-term  growth  🎓  scholar  metabuch  org:edu  success  tactics  math.AG  tricki  meta:research  examples  concrete  s:*  info-dynamics  s-factor  prof  org:junk  expert-experience 
may 2016 by nhaliday

bundles : academeframemath

related tags

abstraction  academia  advice  algebra  berkeley  bits  books  cartoons  coding-theory  combo-optimization  communication-complexity  complexity  concentration-of-measure  concrete  counterexample  course  crypto  dana-moshkovitz  discrete  draft  duality  encyclopedic  examples  exocortex  expanders  expert  expert-experience  exposition  fields  geometry  grad-school  growth  hamming  hi-order-bits  homepage  homogeneity  info-dynamics  information-theory  init  insight  interdisciplinary  intuition  israel  janus  learning  lecture-notes  levers  linear-algebra  linear-programming  linearity  links  list  logic  long-term  madhu-sudan  matching  math  math.AC  math.AG  math.CO  math.NT  math.RT  mathtariat  meta:math  meta:research  metabuch  mit  monotonicity  motivation  nibble  no-go  oly  org:bleg  org:edu  org:junk  overflow  p:**  people  phd  pic  pigeonhole-markov  polynomials  positivity  probabilistic-method  prof  proofs  pseudorandomness  puzzles  q-n-a  qra  reflection  regularity  rigorous-crypto  roadmap  s-factor  s:*  scholar  shannon  signum  soft-question  sparsity  stanford  strategy  stream  success  synthesis  tactics  tcs  thinking  tidbits  tip-of-tongue  todo  tracker  tricki  unit  visual-understanding  visualization  wormholes  worrydream  yoga  🎓  👳 

Copy this bookmark: