nhaliday + jobs   82

Introduction · CTF Field Guide
also has some decent looking career advice and links to books/courses if I ever get interested in infosec stuff
guide  security  links  list  recommendations  contest  puzzles  hacker  init  adversarial  systems  traces  accretion  programming  debugging  assembly  c(pp)  metal-to-virtual  career  planning  jobs  books  course  learning  threat-modeling  tech  working-stiff 
yesterday by nhaliday
CakeML
some interesting job openings in Sydney listed here
programming  pls  plt  functional  ocaml-sml  formal-methods  rigor  compilers  types  numerics  accuracy  estimate  research-program  homepage  anglo  jobs  tech  cool 
august 2019 by nhaliday
Analysis of Current and Future Computer Science Needs via Advertised Faculty Searches for 2019 - CRN
Differences are also seen when analyzing results based on the type of institution. Positions related to Security have the highest percentages for all but top-100 institutions. The area of Artificial Intelligence/Data Mining/Machine Learning is of most interest for top-100 PhD institutions. Roughly 35% of positions for PhD institutions are in data-oriented areas. The results show a strong interest in data-oriented areas by public PhD and private PhD, MS, and BS institutions while public MS and BS institutions are most interested in Security.
org:edu  data  analysis  visualization  trends  recruiting  jobs  career  planning  academia  higher-ed  cs  tcs  machine-learning  systems  pro-rata  measure  long-term  🎓  uncertainty  progression  grad-school  phd  distribution  ranking  top-n  security  status  s-factor  comparison  homo-hetero  correlation  org:ngo  white-paper  cost-benefit 
june 2019 by nhaliday
Stack Overflow Developer Survey 2018
Rust, Python, Go in top most loved
F#/OCaml most high paying globally, Erlang/Scala/OCaml in the US (F# still in top 10)
ML specialists high-paid
editor usage: VSCode > VS > Sublime > Vim > Intellij >> Emacs
ranking  list  top-n  time-series  data  database  programming  engineering  pls  trends  stackex  poll  career  exploratory  network-structure  ubiquity  ocaml-sml  rust  golang  python  dotnet  money  jobs  compensation  erlang  scala  jvm  ai  ai-control  risk  futurism  ethical-algorithms  data-science  machine-learning  editors  devtools  tools  pro-rata  org:com  software  analysis  article  human-capital  let-me-see  expert-experience  complement-substitute 
december 2018 by nhaliday
Information Processing: US Needs a National AI Strategy: A Sputnik Moment?
FT podcasts on US-China competition and AI: http://infoproc.blogspot.com/2018/05/ft-podcasts-on-us-china-competition-and.html

A new recommended career path for effective altruists: China specialist: https://80000hours.org/articles/china-careers/
Our rough guess is that it would be useful for there to be at least ten people in the community with good knowledge in this area within the next few years.

By “good knowledge” we mean they’ve spent at least 3 years studying these topics and/or living in China.

We chose ten because that would be enough for several people to cover each of the major areas listed (e.g. 4 within AI, 2 within biorisk, 2 within foreign relations, 1 in another area).

AI Policy and Governance Internship: https://www.fhi.ox.ac.uk/ai-policy-governance-internship/

https://www.fhi.ox.ac.uk/deciphering-chinas-ai-dream/
https://www.fhi.ox.ac.uk/wp-content/uploads/Deciphering_Chinas_AI-Dream.pdf
Deciphering China’s AI Dream
The context, components, capabilities, and consequences of
China’s strategy to lead the world in AI

Europe’s AI delusion: https://www.politico.eu/article/opinion-europes-ai-delusion/
Brussels is failing to grasp threats and opportunities of artificial intelligence.
By BRUNO MAÇÃES

When the computer program AlphaGo beat the Chinese professional Go player Ke Jie in a three-part match, it didn’t take long for Beijing to realize the implications.

If algorithms can already surpass the abilities of a master Go player, it can’t be long before they will be similarly supreme in the activity to which the classic board game has always been compared: war.

As I’ve written before, the great conflict of our time is about who can control the next wave of technological development: the widespread application of artificial intelligence in the economic and military spheres.

...

If China’s ambitions sound plausible, that’s because the country’s achievements in deep learning are so impressive already. After Microsoft announced that its speech recognition software surpassed human-level language recognition in October 2016, Andrew Ng, then head of research at Baidu, tweeted: “We had surpassed human-level Chinese recognition in 2015; happy to see Microsoft also get there for English less than a year later.”

...

One obvious advantage China enjoys is access to almost unlimited pools of data. The machine-learning technologies boosting the current wave of AI expansion are as good as the amount of data they can use. That could be the number of people driving cars, photos labeled on the internet or voice samples for translation apps. With 700 or 800 million Chinese internet users and fewer data protection rules, China is as rich in data as the Gulf States are in oil.

How can Europe and the United States compete? They will have to be commensurately better in developing algorithms and computer power. Sadly, Europe is falling behind in these areas as well.

...

Chinese commentators have embraced the idea of a coming singularity: the moment when AI surpasses human ability. At that point a number of interesting things happen. First, future AI development will be conducted by AI itself, creating exponential feedback loops. Second, humans will become useless for waging war. At that point, the human mind will be unable to keep pace with robotized warfare. With advanced image recognition, data analytics, prediction systems, military brain science and unmanned systems, devastating wars might be waged and won in a matter of minutes.

...

The argument in the new strategy is fully defensive. It first considers how AI raises new threats and then goes on to discuss the opportunities. The EU and Chinese strategies follow opposite logics. Already on its second page, the text frets about the legal and ethical problems raised by AI and discusses the “legitimate concerns” the technology generates.

The EU’s strategy is organized around three concerns: the need to boost Europe’s AI capacity, ethical issues and social challenges. Unfortunately, even the first dimension quickly turns out to be about “European values” and the need to place “the human” at the center of AI — forgetting that the first word in AI is not “human” but “artificial.”

https://twitter.com/mr_scientism/status/983057591298351104
https://archive.is/m3Njh
US military: "LOL, China thinks it's going to be a major player in AI, but we've got all the top AI researchers. You guys will help us develop weapons, right?"

US AI researchers: "No."

US military: "But... maybe just a computer vision app."

US AI researchers: "NO."

https://www.theverge.com/2018/4/4/17196818/ai-boycot-killer-robots-kaist-university-hanwha
https://www.nytimes.com/2018/04/04/technology/google-letter-ceo-pentagon-project.html
https://twitter.com/mr_scientism/status/981685030417326080
https://archive.is/3wbHm
AI-risk was a mistake.
hsu  scitariat  commentary  video  presentation  comparison  usa  china  asia  sinosphere  frontier  technology  science  ai  speedometer  innovation  google  barons  deepgoog  stories  white-paper  strategy  migration  iran  human-capital  corporation  creative  alien-character  military  human-ml  nationalism-globalism  security  investing  government  games  deterrence  defense  nuclear  arms  competition  risk  ai-control  musk  optimism  multi  news  org:mag  europe  EU  80000-hours  effective-altruism  proposal  article  realness  offense-defense  war  biotech  altruism  language  foreign-lang  philosophy  the-great-west-whale  enhancement  foreign-policy  geopolitics  anglo  jobs  career  planning  hmm  travel  charity  tech  intel  media  teaching  tutoring  russia  india  miri-cfar  pdf  automation  class  labor  polisci  society  trust  n-factor  corruption  leviathan  ethics  authoritarianism  individualism-collectivism  revolution  economics  inequality  civic  law  regulation  data  scale  pro-rata  capital  zero-positive-sum  cooperate-defect  distribution  time-series  tre 
february 2018 by nhaliday
Which industries are the most liberal and most conservative?
How Democratic or Republican is your job? This tool tells you: https://www.washingtonpost.com/news/the-fix/wp/2015/06/03/how-democratic-or-republican-is-your-job-this-tool-tells-you/?utm_term=.e19707abd9f1

http://verdantlabs.com/politics_of_professions/index.html

What you do and how you vote: http://www.pleeps.org/2017/01/07/what-you-do-and-how-you-vote/

trending blue across white-collar professions:
https://www.nytimes.com/2019/09/18/opinion/trump-fundraising-donors.html
https://twitter.com/adam_bonica/status/1174536380329803776
https://archive.is/r7YB6

https://twitter.com/whyvert/status/1174735746088996864
https://archive.is/Cwrih
This is partly because the meaning of left and right changed during that period. Left used to about protecting workers. Now it's mainly about increasing the power of the elite class over the working class - thus their increased support.
--
yes, it is a different kind of left now

academia:
https://en.wikipedia.org/wiki/Political_views_of_American_academics

The Legal Academy's Ideological Uniformity: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2953087

Homogenous: The Political Affiliations of Elite Liberal Arts College Faculty: https://sci-hub.tw/10.1007/s12129-018-9700-x
includes crosstab by discipline

https://www.conservativecriminology.com/uploads/5/6/1/7/56173731/lounsbery_9-25.pdf#page=28
Neil Gross, Solon Simmons
THE SOCIAL AND POLITICAL VIEWS OF AMERICAN PROFESSORS

another crosstab
description of data sampling on page 21, meant to be representative of all undergraduate degree-granting institutions

Computer science 32.3 58.1 9.7

It’s finally out–The big review paper on the lack of political diversity in social psychology: https://heterodoxacademy.org/2015/09/14/bbs-paper-on-lack-of-political-diversity/
https://heterodoxacademy.org/2015/09/21/political-diversity-response-to-33-critiques/
http://righteousmind.com/viewpoint-diversity/
http://www.nationalaffairs.com/publications/detail/real-academic-diversity
http://quillette.com/2017/07/06/social-sciences-undergoing-purity-spiral/
What’s interesting about Haidt’s alternative interpretation of the liberal progress narrative is that he mentions two elements central to the narrative—private property and nations. And what has happened to a large extent is that as the failures of communism have become increasingly apparent many on the left—including social scientists—have shifted their activism away from opposing private property and towards other aspects, for example globalism.

But how do we know a similarly disastrous thing is not going to happen with globalism as happened with communism? What if some form of national and ethnic affiliation is a deep-seated part of human nature, and that trying to forcefully suppress it will eventually lead to a disastrous counter-reaction? What if nations don’t create conflict, but alleviate it? What if a decentralised structure is the best way for human society to function?
news  org:lite  data  study  summary  politics  polisci  ideology  correlation  economics  finance  law  academia  media  tech  sv  heavy-industry  energy-resources  biophysical-econ  agriculture  pharma  things  visualization  crosstab  phalanges  housing  scale  money  elite  charity  class-warfare  coalitions  demographics  business  distribution  polarization  database  multi  org:rec  dynamic  tools  calculator  list  top-n  labor  management  leadership  government  hari-seldon  gnosis-logos  career  planning  jobs  dirty-hands  long-term  scitariat  haidt  org:ngo  commentary  higher-ed  psychology  social-psych  social-science  westminster  institutions  roots  chart  discrimination  debate  critique  biases  diversity  homo-hetero  replication  org:mag  letters  org:popup  ethnocentrism  error  communism  universalism-particularism  whiggish-hegelian  us-them  tribalism  wonkish  org:data  analysis  general-survey  exploratory  stylized-facts  elections  race  education  twitter  social  backup  journos-pundits  gnon  aphorism  impetus  interests  self-interest 
september 2017 by nhaliday
Lessons from a year’s worth of hiring data | Aline Lerner's Blog
- typos and grammatical errors matter more than anything else
[I feel like this is probably broadly applicable to other application processes, in the sense that it's more important than you might guess]
- having attended a top computer science school doesn’t matter
- listing side projects on your resume isn’t as advantageous as expected
- GPA doesn’t seem to matter
career  tech  sv  data  analysis  objektbuch  jobs  🖥  tactics  empirical  recruiting  working-stiff  transitions  progression  interview-prep 
december 2016 by nhaliday
Can California Employers Prohibit Moonlighting? | California Employment Law
lol at the pearl-clutching for employers (won't someone think of the corporations!) but seems like a good site for reading up on california labor laws
http://www.coyoteblog.com/coyote_blog/2017/08/employing-people-in-california-really-is-harder.html

Noncompete Pacts, Under Siege, Find Haven in Idaho: https://www.nytimes.com/2017/07/14/business/economy/boise-idaho-noncompete-law.html
Do Non-Compete Covenants Influence State Startup Activity? Evidence from the Michigan Experiment: https://ideas.repec.org/p/fip/fedpwp/17-30.html
compensation  career  jobs  law  advice  business  labor  sv  california  working-stiff  the-west  multi  news  org:rec  regulation  insurance  contracts  usa  midwest  study  economics  microfoundations  natural-experiment  policy  endo-exo  history  mostly-modern  competition  markets  startups  innovation  🎩  endogenous-exogenous  freelance  microbiz 
may 2016 by nhaliday
How to pass a programming interview - Triplebyte
Mostly intuitive (eg, I had also planned to interview in reverse order and use Python but mention C++ experience), but still very good advice. Summoning/faking enthusiasm will prob be hardest part for me.
programming  career  jobs  tech  recruiting  advice  checklists  working-stiff  interview-prep  system-design  minimum-viable  pls  jvm  python  c(pp)  practice  education  signaling  judgement  prioritizing  list  top-n  metabuch  objektbuch  🖥  transitions  techtariat  org:com 
march 2016 by nhaliday
Who Y Combinator Companies Want — Triplebyte Blog — Medium
1. There’s more demand for product-focused programmers than there is for programmers focused on hard technical problems. The “Product Programmer” and “Technical Programmer” profiles are identical, except one is motivated by product design, and the other by solving hard programming problems. There is almost twice as much demand for the product programmer among our companies. And the “Academic Programmer” (hard-problem focused, but without the experience) has half again the demand. This is consistent with what we’ve seen introducing engineers to companies. Two large YC companies (both with machine learning teams) have told us that they consider interest in ML a negative signal [ed.: :(]. It’s noteworthy that this is almost entirely at odds with the motivations that programmers express to us. We see ten times more engineers interested in Machine Learning and AI than we see interested in user testing or UX [ed.: duh].
2. (Almost) everyone dislikes enterprise programmers. We don’t agree with this. We’ve seen a bunch of great Java programmers. But it’s what our data shows. The Enterprise Java profile is surpassed in dislikes only by the Academic Programmer. This is in spite of the fact we explicitly say the Enterprise Programmer is smart and good at their job. In our candidate interview data, this carries over to language choice. Programmers who used Java or C# (when interviewing with us) go on to pass interviews with companies at half the rate of programmers who use Ruby or JavaScript. (The C# pass rate is actually much lower than the Java pass rate, but the C# numbers are not yet significant by themselves.) Tangential facts: programmers who use Vim with us pass interviews with companies at a higher rate than programmers who use Emacs, and programmers on Windows pass at a lower rate than programmers on OS X or Linux.
3. Experience matters massively. Notice that the Rusty Experienced Programmer beats both of the junior programmer profiles, in spite of stronger positive language in the junior profiles. It makes sense that there’s more demand for experienced programmers, but the scale of the difference surprised me. One prominent YC company just does not hire recent college grads. And those that do set a higher bar. Among our first group of applicants, experienced people passed company interviews at a rate 8 times higher than junior people. We’ve since improved that, I’ll note. But experience continues to trump most other factors. Recent college grads who have completed at least one internship pass interviews with companies at twice the rate of college grads who have not done internships (if you’re in university now, definitely do an internship). Experience at a particular set of respected companies carries the most weight. Engineers who have worked at Google, Apple, Facebook, Amazon or Microsoft pass interviews at a 30% higher rate than candidates who have not.
startups  career  planning  jobs  sv  yc  recruiting  long-term  data  analysis  tactics  🖥  success  empirical  working-stiff  transitions  progression  tech  top-n  values  multi  engineering  interview-prep  judgement  signaling  techtariat  org:com  supply-demand  human-capital  expert-experience  simulation  experiment 
december 2015 by nhaliday
« earlier      
per page:    204080120160

bundles : bizness

related tags

80000-hours  :/  ability-competence  abstraction  academia  accretion  accuracy  acm  advanced  adversarial  advice  age-generation  aggregator  aging  agriculture  ai  ai-control  algorithmic-econ  algorithms  alien-character  allodium  altruism  amazon  analysis  anglo  anglosphere  aphorism  api  applicability-prereqs  applications  arbitrage  arms  arrows  art  article  asia  assembly  audio  authoritarianism  autism  automation  backup  barons  benchmarks  best-practices  biases  big-picture  bio  bioinformatics  biophysical-econ  biotech  blog  books  britain  browser  build-packaging  business  c(pp)  calculator  california  capital  career  charity  chart  cheatsheet  checking  checklists  china  civic  class  class-warfare  client-server  cloud  coalitions  code-dive  code-organizing  commentary  communication  communism  comparison  compensation  competition  compilers  complement-substitute  complexity  composition-decomposition  computation  computer-vision  concurrency  confluence  consulting-freelance  contest  contracts  contradiction  contrarianism  cool  cooperate-defect  corporation  correlation  corruption  cost-benefit  coupling-cohesion  course  creative  critique  crosstab  cs  culture  current-events  dan-luu  dark-arts  data  data-science  data-structures  database  dbs  debate  debugging  deep-learning  deepgoog  defense  demographics  design  desktop  detail-architecture  deterrence  devops  devtools  dirty-hands  discipline  discrimination  discussion  distributed  distribution  diversity  dotnet  dynamic  economics  econotariat  ecosystem  editors  education  effective-altruism  efficiency  eh  elections  electromag  elite  empirical  endo-exo  endogenous-exogenous  energy-resources  engineering  enhancement  entrepreneurialism  erik-demaine  erlang  error  essay  estimate  ethical-algorithms  ethics  ethnocentrism  EU  europe  evan-miller  evidence-based  examples  experiment  expert-experience  exploratory  externalities  extrema  facebook  fall-2016  fellowship  finance  flexibility  foreign-lang  foreign-policy  form-design  formal-methods  frameworks  free  freelance  frontend  frontier  functional  futurism  gallic  game-theory  games  gender  general-survey  genetics  genomics  geography  geopolitics  gig-econ  gnon  gnosis-logos  golang  google  government  grad-school  ground-up  growth  guide  hacker  haidt  happy-sad  hardware  hari-seldon  heavy-industry  high-variance  higher-ed  history  hmm  hn  homepage  homo-hetero  housing  hsu  huge-data-the-biggest  human-bean  human-capital  human-ml  hypocrisy  ideology  idk  IEEE  impact  impetus  increase-decrease  india  individualism-collectivism  inequality  info-foraging  init  innovation  institutions  insurance  intel  intellectual-property  interests  interface-compatibility  interview  interview-prep  intricacy  investing  iran  israel  japan  javascript  jobs  journos-pundits  judgement  jvm  knowledge  labor  language  law  leadership  learning  learning-theory  left-wing  legacy  let-me-see  letters  leviathan  libraries  links  linux  list  local-global  long-term  machine-learning  macro  management  maps  marginal-rev  markets  math  math.CA  math.CO  meaningness  measure  measurement  mechanism-design  media  MENA  metabuch  metal-to-virtual  microbiz  microfoundations  microsoft  midwest  migration  military  minimum-viable  miri-cfar  mobile  money  money-for-time  morality  mostly-modern  move-fast-(and-break-things)  multi  music  musk  n-factor  nationalism-globalism  natural-experiment  negotiation  network-structure  networking  news  nibble  nitty-gritty  noahpinion  northeast  nuclear  numerics  nyc  objektbuch  ocaml-sml  offense-defense  oly-programming  open-things  optimism  org:anglo  org:biz  org:bv  org:com  org:data  org:edu  org:gov  org:lite  org:mag  org:ngo  org:popup  org:rec  organization  os  overflow  p:null  p:someday  p:whenever  parenting  pareto  paste  pdf  performance  phalanges  pharma  phd  philosophy  pic  planning  pls  plt  poast  podcast  polarization  policy  polisci  politics  poll  power  practice  pragmatic  prediction  presentation  prioritizing  privacy  pro-rata  probability  problem-solving  productivity  profile  programming  progression  property-rights  proposal  protocol-metadata  psychology  puzzles  python  q-n-a  qra  quixotic  quora  r-lang  race  rand-approx  random  ranking  rationality  ratty  reading  realness  recommendations  recruiting  reddit  reference  reflection  regularizer  regulation  rent-seeking  replication  repo  research  research-program  responsibility  retention  review  revolution  rhetoric  rigor  risk  roadmap  robotics  roots  russia  rust  s-factor  s:*  s:***  saas  scala  scale  scaling-tech  scholar  science  science-anxiety  scitariat  search  securities  security  self-control  self-interest  sentiment  signaling  simplification-normalization  simulation  sinosphere  skunkworks  sleuthin  social  social-psych  social-science  society  socs-and-mops  software  speedometer  ssc  stackex  stanford  startups  state  status  stories  strategy  stream  study  stylized-facts  success  summary  supply-demand  survey  sv  system-design  systems  tactics  tcs  teaching  tech  tech-infrastructure  technology  techtariat  the-great-west-whale  the-west  things  thinking  threat-modeling  time-complexity  time-preference  time-series  time-use  tip-of-tongue  todo  tools  top-n  traces  trade  tradeoffs  transitions  travel  trends  tribalism  trust  tutorial  tutoring  twitter  types  ubiquity  uncertainty  universalism-particularism  unix  urban-rural  us-them  usa  values  vcs  venture  video  visualization  war  web  westminster  whiggish-hegelian  white-paper  within-group  wonkish  working-stiff  world  writing  wtf  yak-shaving  yc  yvain  zero-positive-sum  🎓  🎩  🐸  👽  🖥  🦉 

Copy this bookmark:



description:


tags: