nhaliday + human-ml   23

Basic Error Rates
This page describes human error rates in a variety of contexts.

Most of the error rates are for mechanical errors. A good general figure for mechanical error rates appears to be about 0.5%.

Of course the denominator differs across studies. However only fairly simple actions are used in the denominator.

The Klemmer and Snyder study shows that much lower error rates are possible--in this case for people whose job consisted almost entirely of data entry.

The error rate for more complex logic errors is about 5%, based primarily on data on other pages, especially the program development page.
org:junk  list  links  objektbuch  data  database  error  accuracy  human-ml  machine-learning  ai  pro-rata  metrics  automation  benchmarks  marginal  nlp  language  density  writing  dataviz  meta:reading  speedometer 
may 2019 by nhaliday
Information Processing: US Needs a National AI Strategy: A Sputnik Moment?
FT podcasts on US-China competition and AI: http://infoproc.blogspot.com/2018/05/ft-podcasts-on-us-china-competition-and.html

A new recommended career path for effective altruists: China specialist: https://80000hours.org/articles/china-careers/
Our rough guess is that it would be useful for there to be at least ten people in the community with good knowledge in this area within the next few years.

By “good knowledge” we mean they’ve spent at least 3 years studying these topics and/or living in China.

We chose ten because that would be enough for several people to cover each of the major areas listed (e.g. 4 within AI, 2 within biorisk, 2 within foreign relations, 1 in another area).

AI Policy and Governance Internship: https://www.fhi.ox.ac.uk/ai-policy-governance-internship/

Deciphering China’s AI Dream
The context, components, capabilities, and consequences of
China’s strategy to lead the world in AI

Europe’s AI delusion: https://www.politico.eu/article/opinion-europes-ai-delusion/
Brussels is failing to grasp threats and opportunities of artificial intelligence.

When the computer program AlphaGo beat the Chinese professional Go player Ke Jie in a three-part match, it didn’t take long for Beijing to realize the implications.

If algorithms can already surpass the abilities of a master Go player, it can’t be long before they will be similarly supreme in the activity to which the classic board game has always been compared: war.

As I’ve written before, the great conflict of our time is about who can control the next wave of technological development: the widespread application of artificial intelligence in the economic and military spheres.


If China’s ambitions sound plausible, that’s because the country’s achievements in deep learning are so impressive already. After Microsoft announced that its speech recognition software surpassed human-level language recognition in October 2016, Andrew Ng, then head of research at Baidu, tweeted: “We had surpassed human-level Chinese recognition in 2015; happy to see Microsoft also get there for English less than a year later.”


One obvious advantage China enjoys is access to almost unlimited pools of data. The machine-learning technologies boosting the current wave of AI expansion are as good as the amount of data they can use. That could be the number of people driving cars, photos labeled on the internet or voice samples for translation apps. With 700 or 800 million Chinese internet users and fewer data protection rules, China is as rich in data as the Gulf States are in oil.

How can Europe and the United States compete? They will have to be commensurately better in developing algorithms and computer power. Sadly, Europe is falling behind in these areas as well.


Chinese commentators have embraced the idea of a coming singularity: the moment when AI surpasses human ability. At that point a number of interesting things happen. First, future AI development will be conducted by AI itself, creating exponential feedback loops. Second, humans will become useless for waging war. At that point, the human mind will be unable to keep pace with robotized warfare. With advanced image recognition, data analytics, prediction systems, military brain science and unmanned systems, devastating wars might be waged and won in a matter of minutes.


The argument in the new strategy is fully defensive. It first considers how AI raises new threats and then goes on to discuss the opportunities. The EU and Chinese strategies follow opposite logics. Already on its second page, the text frets about the legal and ethical problems raised by AI and discusses the “legitimate concerns” the technology generates.

The EU’s strategy is organized around three concerns: the need to boost Europe’s AI capacity, ethical issues and social challenges. Unfortunately, even the first dimension quickly turns out to be about “European values” and the need to place “the human” at the center of AI — forgetting that the first word in AI is not “human” but “artificial.”

US military: "LOL, China thinks it's going to be a major player in AI, but we've got all the top AI researchers. You guys will help us develop weapons, right?"

US AI researchers: "No."

US military: "But... maybe just a computer vision app."

US AI researchers: "NO."

AI-risk was a mistake.
hsu  scitariat  commentary  video  presentation  comparison  usa  china  asia  sinosphere  frontier  technology  science  ai  speedometer  innovation  google  barons  deepgoog  stories  white-paper  strategy  migration  iran  human-capital  corporation  creative  alien-character  military  human-ml  nationalism-globalism  security  investing  government  games  deterrence  defense  nuclear  arms  competition  risk  ai-control  musk  optimism  multi  news  org:mag  europe  EU  80000-hours  effective-altruism  proposal  article  realness  offense-defense  war  biotech  altruism  language  foreign-lang  philosophy  the-great-west-whale  enhancement  foreign-policy  geopolitics  anglo  jobs  career  planning  hmm  travel  charity  tech  intel  media  teaching  tutoring  russia  india  miri-cfar  pdf  automation  class  labor  polisci  society  trust  n-factor  corruption  leviathan  ethics  authoritarianism  individualism-collectivism  revolution  economics  inequality  civic  law  regulation  data  scale  pro-rata  capital  zero-positive-sum  cooperate-defect  distribution  time-series  tre 
february 2018 by nhaliday
The Bridge: 数字化 – 网络化 – 智能化: China’s Quest for an AI Revolution in Warfare
The PLA’s organizational tendencies could render it more inclined to take full advantage of the disruptive potential of artificial intelligence, without constraints due to concerns about keeping humans ‘in the loop.’ In its command culture, the PLA has tended to consolidate and centralize authorities at higher levels, remaining reluctant to delegate decision-making downward. The introduction of information technology has exacerbated the tendency of PLA commanders to micromanage subordinates through a practice known as “skip-echelon command” (越级指挥) that enables the circumvention of command bureaucracy to influence units and weapons systems at even a tactical level.[xxviii] This practice can be symptomatic of a culture of distrust and bureaucratic immaturity. The PLA has confronted and started to progress in mitigating its underlying human resource challenges, recruiting increasingly educated officers and enlisted personnel, while seeking to modernize and enhance political and ideological work aimed to ensure loyalty to the Chinese Communist Party. However, the employment of artificial intelligence could appeal to the PLA as a way to circumvent and work around those persistent issues. In the long term, the intersection of the PLA’s focus on ‘scientific’ approaches to warfare with the preference to consolidate and centralize decision-making could cause the PLA’s leadership to rely more upon artificial intelligence, rather than human judgment.
news  org:mag  org:foreign  trends  china  asia  sinosphere  war  meta:war  military  defense  strategy  current-events  ai  automation  technology  foreign-policy  realpolitik  expansionism  innovation  individualism-collectivism  values  prediction  deepgoog  games  n-factor  human-ml  alien-character  risk  ai-control 
june 2017 by nhaliday

bundles : academeacmframe

related tags

80000-hours  accuracy  acemoglu  acm  acmtariat  adversarial  agriculture  ai  ai-control  akrasia  algorithms  alien-character  alignment  allodium  altruism  amazon  analogy  analytical-holistic  anglo  anglosphere  antidemos  apollonian-dionysian  apple  aristos  arms  art  article  asia  atmosphere  attention  audio  authoritarianism  auto-learning  automation  backup  bare-hands  barons  bayesian  being-becoming  benchmarks  benevolence  best-practices  biases  big-peeps  bio  biodet  bioinformatics  biotech  bits  bonferroni  books  brands  britain  business  business-models  c(pp)  california  cancer  canon  capital  capitalism  career  cartoons  charity  chart  china  civic  civil-liberty  class  clever-rats  climate-change  coarse-fine  cog-psych  cold-war  collaboration  commentary  comparison  compensation  competition  complement-substitute  composition-decomposition  computation  computer-vision  concrete  conference  contest  contrarianism  cooperate-defect  corporation  corruption  courage  course  creative  crime  crooked  cs  current-events  cycles  cynicism-idealism  dark-arts  darwinian  data  data-science  database  dataviz  death  debt  decision-making  deep-learning  deep-materialism  deepgoog  defense  definite-planning  degrees-of-freedom  democracy  density  detail-architecture  deterrence  differential-privacy  dimensionality  dirty-hands  discussion  distribution  drugs  duplication  early-modern  economics  education  effective-altruism  efficiency  egalitarianism-hierarchy  einstein  elite  ems  energy-resources  engineering  enhancement  entrepreneurialism  environment  envy  error  essence-existence  estimate  ethics  EU  europe  evolution  examples  exocortex  expansionism  expert  expert-experience  explanans  explanation  exploratory  exposition  extra-introversion  facebook  fashun  FDA  features  feudal  fiction  finance  flexibility  flux-stasis  focus  foreign-lang  foreign-policy  frequentist  frontier  futurism  gallic  games  gelman  generalization  generative  genetics  genomics  geoengineering  geography  geopolitics  germanic  giants  gnon  gnosis-logos  god-man-beast-victim  google  government  gradient-descent  hard-tech  hardware  harvard  heterodox  hidden-motives  high-variance  higher-ed  history  hmm  hn  homo-hetero  honor  hsu  human-capital  human-ml  humanity  hypocrisy  hypothesis-testing  impetus  india  individualism-collectivism  inequality  info-dynamics  information-theory  innovation  insight  institutions  intel  interdisciplinary  interests  interview  investing  iran  iteration-recursion  janus  japan  jobs  journos-pundits  justice  kaggle  knowledge  labor  language  latent-variables  latin-america  law  leadership  learning-theory  lecture-notes  len:short  lens  leviathan  libraries  limits  liner-notes  links  list  literature  local-global  longevity  love-hate  lower-bounds  machine-learning  macro  magnitude  management  map-territory  marginal  market-power  markets  matching  math  math.CA  math.DS  matrix-factorization  measurement  media  medicine  meta:reading  meta:science  meta:war  metabuch  metameta  methodology  metrics  microsoft  migration  military  miri-cfar  mobile  model-class  models  moments  monetary-fiscal  morality  mostly-modern  mrtz  multi  multiplicative  musk  myth  n-factor  narrative  nationalism-globalism  nature  network-structure  neuro  neurons  new-religion  news  nibble  nietzschean  nips  nlp  no-go  noble-lie  northeast  nuclear  nutrition  nyc  objektbuch  occident  offense-defense  old-anglo  oly  online-learning  open-closed  openai  optimism  optimization  order-disorder  org:biz  org:bleg  org:com  org:foreign  org:junk  org:lite  org:mag  org:mat  org:med  org:rec  organization  organizing  orient  oss  outcome-risk  outliers  overflow  papers  paradox  parallax  parametric  patience  pdf  peace-violence  people  personality  perturbation  pessimism  phalanges  pharma  philosophy  physics  pinboard  planning  plots  podcast  polanyi-marx  polarization  polisci  politics  poll  popsci  positivity  power  power-law  pre-ww2  prediction  preprint  presentation  primitivism  princeton  priors-posteriors  privacy  pro-rata  probability  project  properties  proposal  psych-architecture  psychology  q-n-a  qra  quantum  questions  quora  quotes  random  randy-ayndy  ranking  ratty  realness  realpolitik  reason  recommendations  recruiting  redistribution  reflection  regularizer  regulation  reinforcement  religion  rent-seeking  repo  research  research-program  responsibility  revolution  rhythm  risk  ritual  robotics  robust  roots  russia  safety  scale  scaling-tech  science  scifi-fantasy  scitariat  search  securities  security  sensitivity  shakespeare  shift  signal-noise  signaling  signum  singularity  sinosphere  skeleton  skunkworks  slides  social  social-choice  social-norms  society  socs-and-mops  software  space  speculation  speed  speedometer  ssc  stagnation  stanford  startups  statesmen  stats  status  stereotypes  stochastic-processes  stock-flow  stories  strategy  structure  stylized-facts  success  summary  sv  synchrony  tactics  tails  talks  teaching  tech  technology  techtariat  telos-atelos  the-bones  the-classics  the-devil  the-founding  the-great-west-whale  the-watchers  the-west  theory-of-mind  theos  thesis  thick-thin  thiel  things  thinking  time  time-preference  time-series  todo  track-record  trade  tradeoffs  transportation  travel  trends  tribalism  trust  truth  tutoring  twitter  uncertainty  unintended-consequences  urban-rural  us-them  usa  values  venture  video  visual-understanding  visualization  vitality  volo-avolo  war  wealth  welfare-state  white-paper  winner-take-all  wisdom  within-without  world-war  writing  X-not-about-Y  yvain  zero-positive-sum  zooming  🐸  🔬 

Copy this bookmark: