nhaliday + fixed-point   8

gn.general topology - Pair of curves joining opposite corners of a square must intersect---proof? - MathOverflow
In his 'Ordinary Differential Equations' (sec. 1.2) V.I. Arnold says "... every pair of curves in the square joining different pairs of opposite corners must intersect".

This is obvious geometrically but I was wondering how one could go about proving this rigorously. I have thought of a proof using Brouwer's Fixed Point Theorem which I describe below. I would greatly appreciate the group's comments on whether this proof is right and if a simpler proof is possible.

...

Since the full Jordan curve theorem is quite subtle, it might be worth pointing out that theorem in question reduces to the Jordan curve theorem for polygons, which is easier.

Suppose on the contrary that the curves A,BA,B joining opposite corners do not meet. Since A,BA,B are closed sets, their minimum distance apart is some ε>0ε>0. By compactness, each of A,BA,B can be partitioned into finitely many arcs, each of which lies in a disk of diameter <ε/3<ε/3. Then, by a homotopy inside each disk we can replace A,BA,B by polygonal paths A′,B′A′,B′ that join the opposite corners of the square and are still disjoint.

Also, we can replace A′,B′A′,B′ by simple polygonal paths A″,B″A″,B″ by omitting loops. Now we can close A″A″ to a polygon, and B″B″ goes from its "inside" to "outside" without meeting it, contrary to the Jordan curve theorem for polygons.

- John Stillwell
nibble  q-n-a  overflow  math  geometry  topology  tidbits  intricacy  intersection  proofs  gotchas  oly  mathtariat  fixed-point  math.AT  manifolds  intersection-connectedness 
october 2017 by nhaliday
Controversial New Theory Suggests Life Wasn't a Fluke of Biology—It Was Physics | WIRED
First Support for a Physics Theory of Life: https://www.quantamagazine.org/first-support-for-a-physics-theory-of-life-20170726/
Take chemistry, add energy, get life. The first tests of Jeremy England’s provocative origin-of-life hypothesis are in, and they appear to show how order can arise from nothing.
news  org:mag  profile  popsci  bio  xenobio  deep-materialism  roots  eden  physics  interdisciplinary  applications  ideas  thermo  complex-systems  cybernetics  entropy-like  order-disorder  arrows  phys-energy  emergent  empirical  org:sci  org:inst  nibble  chemistry  fixed-point  wild-ideas 
august 2017 by nhaliday
Lecture 6: Nash Equilibrum Existence
pf:
- For mixed strategy profile p ∈ Δ(A), let g_ij(p) = gain for player i to switch to pure strategy j.
- Define y: Δ(A) -> Δ(A) by y_ij(p) ∝ p_ij + g_ij(p) (normalizing constant = 1 + ∑_k g_ik(p)).
- Look at fixed point of y.
pdf  nibble  lecture-notes  exposition  acm  game-theory  proofs  math  topology  existence  fixed-point  simplex  equilibrium  ground-up 
june 2017 by nhaliday

bundles : abstractmath

related tags

acm  acmtariat  ai  albion  apollonian-dionysian  applications  arrows  auto-learning  behavioral-econ  bio  bounded-cognition  chemistry  clarity  comparison  complex-systems  cybernetics  deep-learning  deep-materialism  deepgoog  detail-architecture  dimensionality  early-modern  economics  eden  emergent  empirical  entropy-like  equilibrium  existence  exposition  fiber  fixed-point  game-theory  games  geometry  giants  gotchas  ground-up  history  hsu  huge-data-the-biggest  humility  ideas  info-dynamics  interdisciplinary  intersection  intersection-connectedness  intricacy  lecture-notes  levers  liner-notes  list  machine-learning  manifolds  map-territory  markets  math  math.AT  math.CA  mathtariat  metric-space  mostly-modern  news  nibble  oly  order-disorder  org:bleg  org:inst  org:mag  org:nat  org:sci  overflow  papers  pdf  phys-energy  physics  polisci  popsci  preimage  profile  proofs  q-n-a  quotes  reference  reinforcement  research  roots  s:*  science  scitariat  simplex  social-science  speedometer  state-of-art  stories  summary  tcs  tcstariat  the-trenches  thermo  thinking  tidbits  topology  unaffiliated  von-neumann  wiki  wild-ideas  wonkish  xenobio  🎩 

Copy this bookmark:



description:


tags: