**nhaliday + finiteness**
15

Attributes of God in Christianity - Wikipedia

article list trivia wiki reference religion christianity theos ideology properties paradox heterodox time morality good-evil love-hate emotion philosophy universalism-particularism number whole-partial-many truth power intervention space finiteness envy embodied values descriptive things knowledge justice virtu leviathan exegesis-hermeneutics lexical

june 2018 by nhaliday

article list trivia wiki reference religion christianity theos ideology properties paradox heterodox time morality good-evil love-hate emotion philosophy universalism-particularism number whole-partial-many truth power intervention space finiteness envy embodied values descriptive things knowledge justice virtu leviathan exegesis-hermeneutics lexical

june 2018 by nhaliday

The Physics of Information Processing Superobjects: Daily Life Among the Jupiter Brains

nibble pdf study article essay ratty bostrom physics lower-bounds interdisciplinary computation frontier singularity civilization communication time phys-energy thermo entropy-like lens intelligence futurism philosophy software hardware enhancement no-go data scale magnitude network-structure structure complex-systems concurrency density bits retention mechanics electromag quantum quantum-info speed information-theory measure chemistry gravity relativity the-world-is-just-atoms dirty-hands skunkworks gedanken ideas hard-tech nitty-gritty intricacy len:long spatial whole-partial-many frequency neuro internet web trivia cocktail humanity composition-decomposition instinct reason illusion the-self psychology cog-psych dennett within-without signal-noise coding-theory quotes scifi-fantasy fiction giants death long-short-run janus eden-heaven efficiency finiteness iteration-recursion cycles nietzschean big-peeps examples

april 2018 by nhaliday

nibble pdf study article essay ratty bostrom physics lower-bounds interdisciplinary computation frontier singularity civilization communication time phys-energy thermo entropy-like lens intelligence futurism philosophy software hardware enhancement no-go data scale magnitude network-structure structure complex-systems concurrency density bits retention mechanics electromag quantum quantum-info speed information-theory measure chemistry gravity relativity the-world-is-just-atoms dirty-hands skunkworks gedanken ideas hard-tech nitty-gritty intricacy len:long spatial whole-partial-many frequency neuro internet web trivia cocktail humanity composition-decomposition instinct reason illusion the-self psychology cog-psych dennett within-without signal-noise coding-theory quotes scifi-fantasy fiction giants death long-short-run janus eden-heaven efficiency finiteness iteration-recursion cycles nietzschean big-peeps examples

april 2018 by nhaliday

An Untrollable Mathematician Illustrated

ratty lesswrong comics infographic ai-control ai thinking skeleton miri-cfar big-picture synthesis hi-order-bits interdisciplinary lens logic iteration-recursion probability decision-theory decision-making values flux-stasis formal-values bayesian axioms cs computation math truth uncertainty finiteness nibble cartoons visual-understanding machine-learning troll internet volo-avolo hypothesis-testing telos-atelos inference apollonian-dionysian

april 2018 by nhaliday

ratty lesswrong comics infographic ai-control ai thinking skeleton miri-cfar big-picture synthesis hi-order-bits interdisciplinary lens logic iteration-recursion probability decision-theory decision-making values flux-stasis formal-values bayesian axioms cs computation math truth uncertainty finiteness nibble cartoons visual-understanding machine-learning troll internet volo-avolo hypothesis-testing telos-atelos inference apollonian-dionysian

april 2018 by nhaliday

Prisoner's dilemma - Wikipedia

march 2018 by nhaliday

caveat to result below:

An extension of the IPD is an evolutionary stochastic IPD, in which the relative abundance of particular strategies is allowed to change, with more successful strategies relatively increasing. This process may be accomplished by having less successful players imitate the more successful strategies, or by eliminating less successful players from the game, while multiplying the more successful ones. It has been shown that unfair ZD strategies are not evolutionarily stable. The key intuition is that an evolutionarily stable strategy must not only be able to invade another population (which extortionary ZD strategies can do) but must also perform well against other players of the same type (which extortionary ZD players do poorly, because they reduce each other's surplus).[14]

Theory and simulations confirm that beyond a critical population size, ZD extortion loses out in evolutionary competition against more cooperative strategies, and as a result, the average payoff in the population increases when the population is bigger. In addition, there are some cases in which extortioners may even catalyze cooperation by helping to break out of a face-off between uniform defectors and win–stay, lose–switch agents.[8]

https://alfanl.com/2018/04/12/defection/

Nature boils down to a few simple concepts.

Haters will point out that I oversimplify. The haters are wrong. I am good at saying a lot with few words. Nature indeed boils down to a few simple concepts.

In life, you can either cooperate or defect.

Used to be that defection was the dominant strategy, say in the time when the Roman empire started to crumble. Everybody complained about everybody and in the end nothing got done. Then came Jesus, who told people to be loving and cooperative, and boom: 1800 years later we get the industrial revolution.

Because of Jesus we now find ourselves in a situation where cooperation is the dominant strategy. A normie engages in a ton of cooperation: with the tax collector who wants more and more of his money, with schools who want more and more of his kid’s time, with media who wants him to repeat more and more party lines, with the Zeitgeist of the Collective Spirit of the People’s Progress Towards a New Utopia. Essentially, our normie is cooperating himself into a crumbling Western empire.

Turns out that if everyone blindly cooperates, parasites sprout up like weeds until defection once again becomes the standard.

The point of a post-Christian religion is to once again create conditions for the kind of cooperation that led to the industrial revolution. This necessitates throwing out undead Christianity: you do not blindly cooperate. You cooperate with people that cooperate with you, you defect on people that defect on you. Christianity mixed with Darwinism. God and Gnon meet.

This also means we re-establish spiritual hierarchy, which, like regular hierarchy, is a prerequisite for cooperation. It is this hierarchical cooperation that turns a household into a force to be reckoned with, that allows a group of men to unite as a front against their enemies, that allows a tribe to conquer the world. Remember: Scientology bullied the Cathedral’s tax department into submission.

With a functioning hierarchy, men still gossip, lie and scheme, but they will do so in whispers behind closed doors. In your face they cooperate and contribute to the group’s wellbeing because incentives are thus that contributing to group wellbeing heightens status.

Without a functioning hierarchy, men gossip, lie and scheme, but they do so in your face, and they tell you that you are positively deluded for accusing them of gossiping, lying and scheming. Seeds will not sprout in such ground.

Spiritual dominance is established in the same way any sort of dominance is established: fought for, taken. But the fight is ritualistic. You can’t force spiritual dominance if no one listens, or if you are silenced the ritual is not allowed to happen.

If one of our priests is forbidden from establishing spiritual dominance, that is a sure sign an enemy priest is in better control and has vested interest in preventing you from establishing spiritual dominance..

They defect on you, you defect on them. Let them suffer the consequences of enemy priesthood, among others characterized by the annoying tendency that very little is said with very many words.

https://contingentnotarbitrary.com/2018/04/14/rederiving-christianity/

To recap, we started with a secular definition of Logos and noted that its telos is existence. Given human nature, game theory and the power of cooperation, the highest expression of that telos is freely chosen universal love, tempered by constant vigilance against defection while maintaining compassion for the defectors and forgiving those who repent. In addition, we must know the telos in order to fulfill it.

In Christian terms, looks like we got over half of the Ten Commandments (know Logos for the First, don’t defect or tempt yourself to defect for the rest), the importance of free will, the indestructibility of evil (group cooperation vs individual defection), loving the sinner and hating the sin (with defection as the sin), forgiveness (with conditions), and love and compassion toward all, assuming only secular knowledge and that it’s good to exist.

Iterated Prisoner's Dilemma is an Ultimatum Game: http://infoproc.blogspot.com/2012/07/iterated-prisoners-dilemma-is-ultimatum.html

The history of IPD shows that bounded cognition prevented the dominant strategies from being discovered for over over 60 years, despite significant attention from game theorists, computer scientists, economists, evolutionary biologists, etc. Press and Dyson have shown that IPD is effectively an ultimatum game, which is very different from the Tit for Tat stories told by generations of people who worked on IPD (Axelrod, Dawkins, etc., etc.).

...

For evolutionary biologists: Dyson clearly thinks this result has implications for multilevel (group vs individual selection):

... Cooperation loses and defection wins. The ZD strategies confirm this conclusion and make it sharper. ... The system evolved to give cooperative tribes an advantage over non-cooperative tribes, using punishment to give cooperation an evolutionary advantage within the tribe. This double selection of tribes and individuals goes way beyond the Prisoners' Dilemma model.

implications for fractionalized Europe vis-a-vis unified China?

and more broadly does this just imply we're doomed in the long run RE: cooperation, morality, the "good society", so on...? war and group-selection is the only way to get a non-crab bucket civilization?

Iterated Prisoner’s Dilemma contains strategies that dominate any evolutionary opponent:

http://www.pnas.org/content/109/26/10409.full

http://www.pnas.org/content/109/26/10409.full.pdf

https://www.edge.org/conversation/william_h_press-freeman_dyson-on-iterated-prisoners-dilemma-contains-strategies-that

https://en.wikipedia.org/wiki/Ultimatum_game

analogy for ultimatum game: the state gives the demos a bargain take-it-or-leave-it, and...if the demos refuses...violence?

The nature of human altruism: http://sci-hub.tw/https://www.nature.com/articles/nature02043

- Ernst Fehr & Urs Fischbacher

Some of the most fundamental questions concerning our evolutionary origins, our social relations, and the organization of society are centred around issues of altruism and selfishness. Experimental evidence indicates that human altruism is a powerful force and is unique in the animal world. However, there is much individual heterogeneity and the interaction between altruists and selfish individuals is vital to human cooperation. Depending on the environment, a minority of altruists can force a majority of selfish individuals to cooperate or, conversely, a few egoists can induce a large number of altruists to defect. Current gene-based evolutionary theories cannot explain important patterns of human altruism, pointing towards the importance of both theories of cultural evolution as well as gene–culture co-evolution.

...

Why are humans so unusual among animals in this respect? We propose that quantitatively, and probably even qualitatively, unique patterns of human altruism provide the answer to this question. Human altruism goes far beyond that which has been observed in the animal world. Among animals, fitness-reducing acts that confer fitness benefits on other individuals are largely restricted to kin groups; despite several decades of research, evidence for reciprocal altruism in pair-wise repeated encounters4,5 remains scarce6–8. Likewise, there is little evidence so far that individual reputation building affects cooperation in animals, which contrasts strongly with what we find in humans. If we randomly pick two human strangers from a modern society and give them the chance to engage in repeated anonymous exchanges in a laboratory experiment, there is a high probability that reciprocally altruistic behaviour will emerge spontaneously9,10.

However, human altruism extends far beyond reciprocal altruism and reputation-based cooperation, taking the form of strong reciprocity11,12. Strong reciprocity is a combination of altruistic rewarding, which is a predisposition to reward others for cooperative, norm-abiding behaviours, and altruistic punishment, which is a propensity to impose sanctions on others for norm violations. Strong reciprocators bear the cost of rewarding or punishing even if they gain no individual economic benefit whatsoever from their acts. In contrast, reciprocal altruists, as they have been defined in the biological literature4,5, reward and punish only if this is in their long-term self-interest. Strong reciprocity thus constitutes a powerful incentive for cooperation even in non-repeated interactions and when reputation gains are absent, because strong reciprocators will reward those who cooperate and punish those who defect.

...

We will show that the interaction between selfish and strongly reciprocal … [more]

concept
conceptual-vocab
wiki
reference
article
models
GT-101
game-theory
anthropology
cultural-dynamics
trust
cooperate-defect
coordination
iteration-recursion
sequential
axelrod
discrete
smoothness
evolution
evopsych
EGT
economics
behavioral-econ
sociology
new-religion
deep-materialism
volo-avolo
characterization
hsu
scitariat
altruism
justice
group-selection
decision-making
tribalism
organizing
hari-seldon
theory-practice
applicability-prereqs
bio
finiteness
multi
history
science
social-science
decision-theory
commentary
study
summary
giants
the-trenches
zero-positive-sum
🔬
bounded-cognition
info-dynamics
org:edge
explanation
exposition
org:nat
eden
retention
long-short-run
darwinian
markov
equilibrium
linear-algebra
nitty-gritty
competition
war
explanans
n-factor
europe
the-great-west-whale
occident
china
asia
sinosphere
orient
decentralized
markets
market-failure
cohesion
metabuch
stylized-facts
interdisciplinary
physics
pdf
pessimism
time
insight
the-basilisk
noblesse-oblige
the-watchers
ideas
l
An extension of the IPD is an evolutionary stochastic IPD, in which the relative abundance of particular strategies is allowed to change, with more successful strategies relatively increasing. This process may be accomplished by having less successful players imitate the more successful strategies, or by eliminating less successful players from the game, while multiplying the more successful ones. It has been shown that unfair ZD strategies are not evolutionarily stable. The key intuition is that an evolutionarily stable strategy must not only be able to invade another population (which extortionary ZD strategies can do) but must also perform well against other players of the same type (which extortionary ZD players do poorly, because they reduce each other's surplus).[14]

Theory and simulations confirm that beyond a critical population size, ZD extortion loses out in evolutionary competition against more cooperative strategies, and as a result, the average payoff in the population increases when the population is bigger. In addition, there are some cases in which extortioners may even catalyze cooperation by helping to break out of a face-off between uniform defectors and win–stay, lose–switch agents.[8]

https://alfanl.com/2018/04/12/defection/

Nature boils down to a few simple concepts.

Haters will point out that I oversimplify. The haters are wrong. I am good at saying a lot with few words. Nature indeed boils down to a few simple concepts.

In life, you can either cooperate or defect.

Used to be that defection was the dominant strategy, say in the time when the Roman empire started to crumble. Everybody complained about everybody and in the end nothing got done. Then came Jesus, who told people to be loving and cooperative, and boom: 1800 years later we get the industrial revolution.

Because of Jesus we now find ourselves in a situation where cooperation is the dominant strategy. A normie engages in a ton of cooperation: with the tax collector who wants more and more of his money, with schools who want more and more of his kid’s time, with media who wants him to repeat more and more party lines, with the Zeitgeist of the Collective Spirit of the People’s Progress Towards a New Utopia. Essentially, our normie is cooperating himself into a crumbling Western empire.

Turns out that if everyone blindly cooperates, parasites sprout up like weeds until defection once again becomes the standard.

The point of a post-Christian religion is to once again create conditions for the kind of cooperation that led to the industrial revolution. This necessitates throwing out undead Christianity: you do not blindly cooperate. You cooperate with people that cooperate with you, you defect on people that defect on you. Christianity mixed with Darwinism. God and Gnon meet.

This also means we re-establish spiritual hierarchy, which, like regular hierarchy, is a prerequisite for cooperation. It is this hierarchical cooperation that turns a household into a force to be reckoned with, that allows a group of men to unite as a front against their enemies, that allows a tribe to conquer the world. Remember: Scientology bullied the Cathedral’s tax department into submission.

With a functioning hierarchy, men still gossip, lie and scheme, but they will do so in whispers behind closed doors. In your face they cooperate and contribute to the group’s wellbeing because incentives are thus that contributing to group wellbeing heightens status.

Without a functioning hierarchy, men gossip, lie and scheme, but they do so in your face, and they tell you that you are positively deluded for accusing them of gossiping, lying and scheming. Seeds will not sprout in such ground.

Spiritual dominance is established in the same way any sort of dominance is established: fought for, taken. But the fight is ritualistic. You can’t force spiritual dominance if no one listens, or if you are silenced the ritual is not allowed to happen.

If one of our priests is forbidden from establishing spiritual dominance, that is a sure sign an enemy priest is in better control and has vested interest in preventing you from establishing spiritual dominance..

They defect on you, you defect on them. Let them suffer the consequences of enemy priesthood, among others characterized by the annoying tendency that very little is said with very many words.

https://contingentnotarbitrary.com/2018/04/14/rederiving-christianity/

To recap, we started with a secular definition of Logos and noted that its telos is existence. Given human nature, game theory and the power of cooperation, the highest expression of that telos is freely chosen universal love, tempered by constant vigilance against defection while maintaining compassion for the defectors and forgiving those who repent. In addition, we must know the telos in order to fulfill it.

In Christian terms, looks like we got over half of the Ten Commandments (know Logos for the First, don’t defect or tempt yourself to defect for the rest), the importance of free will, the indestructibility of evil (group cooperation vs individual defection), loving the sinner and hating the sin (with defection as the sin), forgiveness (with conditions), and love and compassion toward all, assuming only secular knowledge and that it’s good to exist.

Iterated Prisoner's Dilemma is an Ultimatum Game: http://infoproc.blogspot.com/2012/07/iterated-prisoners-dilemma-is-ultimatum.html

The history of IPD shows that bounded cognition prevented the dominant strategies from being discovered for over over 60 years, despite significant attention from game theorists, computer scientists, economists, evolutionary biologists, etc. Press and Dyson have shown that IPD is effectively an ultimatum game, which is very different from the Tit for Tat stories told by generations of people who worked on IPD (Axelrod, Dawkins, etc., etc.).

...

For evolutionary biologists: Dyson clearly thinks this result has implications for multilevel (group vs individual selection):

... Cooperation loses and defection wins. The ZD strategies confirm this conclusion and make it sharper. ... The system evolved to give cooperative tribes an advantage over non-cooperative tribes, using punishment to give cooperation an evolutionary advantage within the tribe. This double selection of tribes and individuals goes way beyond the Prisoners' Dilemma model.

implications for fractionalized Europe vis-a-vis unified China?

and more broadly does this just imply we're doomed in the long run RE: cooperation, morality, the "good society", so on...? war and group-selection is the only way to get a non-crab bucket civilization?

Iterated Prisoner’s Dilemma contains strategies that dominate any evolutionary opponent:

http://www.pnas.org/content/109/26/10409.full

http://www.pnas.org/content/109/26/10409.full.pdf

https://www.edge.org/conversation/william_h_press-freeman_dyson-on-iterated-prisoners-dilemma-contains-strategies-that

https://en.wikipedia.org/wiki/Ultimatum_game

analogy for ultimatum game: the state gives the demos a bargain take-it-or-leave-it, and...if the demos refuses...violence?

The nature of human altruism: http://sci-hub.tw/https://www.nature.com/articles/nature02043

- Ernst Fehr & Urs Fischbacher

Some of the most fundamental questions concerning our evolutionary origins, our social relations, and the organization of society are centred around issues of altruism and selfishness. Experimental evidence indicates that human altruism is a powerful force and is unique in the animal world. However, there is much individual heterogeneity and the interaction between altruists and selfish individuals is vital to human cooperation. Depending on the environment, a minority of altruists can force a majority of selfish individuals to cooperate or, conversely, a few egoists can induce a large number of altruists to defect. Current gene-based evolutionary theories cannot explain important patterns of human altruism, pointing towards the importance of both theories of cultural evolution as well as gene–culture co-evolution.

...

Why are humans so unusual among animals in this respect? We propose that quantitatively, and probably even qualitatively, unique patterns of human altruism provide the answer to this question. Human altruism goes far beyond that which has been observed in the animal world. Among animals, fitness-reducing acts that confer fitness benefits on other individuals are largely restricted to kin groups; despite several decades of research, evidence for reciprocal altruism in pair-wise repeated encounters4,5 remains scarce6–8. Likewise, there is little evidence so far that individual reputation building affects cooperation in animals, which contrasts strongly with what we find in humans. If we randomly pick two human strangers from a modern society and give them the chance to engage in repeated anonymous exchanges in a laboratory experiment, there is a high probability that reciprocally altruistic behaviour will emerge spontaneously9,10.

However, human altruism extends far beyond reciprocal altruism and reputation-based cooperation, taking the form of strong reciprocity11,12. Strong reciprocity is a combination of altruistic rewarding, which is a predisposition to reward others for cooperative, norm-abiding behaviours, and altruistic punishment, which is a propensity to impose sanctions on others for norm violations. Strong reciprocators bear the cost of rewarding or punishing even if they gain no individual economic benefit whatsoever from their acts. In contrast, reciprocal altruists, as they have been defined in the biological literature4,5, reward and punish only if this is in their long-term self-interest. Strong reciprocity thus constitutes a powerful incentive for cooperation even in non-repeated interactions and when reputation gains are absent, because strong reciprocators will reward those who cooperate and punish those who defect.

...

We will show that the interaction between selfish and strongly reciprocal … [more]

march 2018 by nhaliday

Best Topology Olympiad ***EVER*** - Affine Mess - Quora

october 2017 by nhaliday

Most people take courses in topology, algebraic topology, knot theory, differential topology and what have you without once doing anything with a finite topological space. There may have been some quirky questions about such spaces early on in a point-set topology course, but most of us come out of these courses thinking that finite topological spaces are either discrete or only useful as an exotic counterexample to some standard separation property. The mere idea of calculating the fundamental group for a 4-point space seems ludicrous.

Only it’s not. This is a genuine question, not a joke, and I find it both hilarious and super educational. DO IT!!

nibble
qra
announcement
math
geometry
topology
puzzles
rec-math
oly
links
math.AT
ground-up
finiteness
math.GN
Only it’s not. This is a genuine question, not a joke, and I find it both hilarious and super educational. DO IT!!

october 2017 by nhaliday

Archimedes Palimpsest - Wikipedia

may 2017 by nhaliday

Using this method, Archimedes was able to solve several problems now treated by integral calculus, which was given its modern form in the seventeenth century by Isaac Newton and Gottfried Leibniz. Among those problems were that of calculating the center of gravity of a solid hemisphere, the center of gravity of a frustum of a circular paraboloid, and the area of a region bounded by a parabola and one of its secant lines. (For explicit details, see Archimedes' use of infinitesimals.)

When rigorously proving theorems, Archimedes often used what are now called Riemann sums. In "On the Sphere and Cylinder," he gives upper and lower bounds for the surface area of a sphere by cutting the sphere into sections of equal width. He then bounds the area of each section by the area of an inscribed and circumscribed cone, which he proves have a larger and smaller area correspondingly. He adds the areas of the cones, which is a type of Riemann sum for the area of the sphere considered as a surface of revolution.

But there are two essential differences between Archimedes' method and 19th-century methods:

1. Archimedes did not know about differentiation, so he could not calculate any integrals other than those that came from center-of-mass considerations, by symmetry. While he had a notion of linearity, to find the volume of a sphere he had to balance two figures at the same time; he never figured out how to change variables or integrate by parts.

2. When calculating approximating sums, he imposed the further constraint that the sums provide rigorous upper and lower bounds. This was required because the Greeks lacked algebraic methods that could establish that error terms in an approximation are small.

big-peeps
history
iron-age
mediterranean
the-classics
innovation
discovery
knowledge
math
math.CA
finiteness
the-trenches
wiki
trivia
cocktail
stories
nibble
canon
differential
When rigorously proving theorems, Archimedes often used what are now called Riemann sums. In "On the Sphere and Cylinder," he gives upper and lower bounds for the surface area of a sphere by cutting the sphere into sections of equal width. He then bounds the area of each section by the area of an inscribed and circumscribed cone, which he proves have a larger and smaller area correspondingly. He adds the areas of the cones, which is a type of Riemann sum for the area of the sphere considered as a surface of revolution.

But there are two essential differences between Archimedes' method and 19th-century methods:

1. Archimedes did not know about differentiation, so he could not calculate any integrals other than those that came from center-of-mass considerations, by symmetry. While he had a notion of linearity, to find the volume of a sphere he had to balance two figures at the same time; he never figured out how to change variables or integrate by parts.

2. When calculating approximating sums, he imposed the further constraint that the sums provide rigorous upper and lower bounds. This was required because the Greeks lacked algebraic methods that could establish that error terms in an approximation are small.

may 2017 by nhaliday

Sacred Principles As Exhaustible Resources | Slate Star Codex

ratty yvain ssc commentary current-events politics culture-war harvard civil-liberty toxoplasmosis info-dynamics sanctity-degradation absolute-relative exit-voice murray higher-ed polarization tribalism volo-avolo finiteness flexibility unintended-consequences social-norms

april 2017 by nhaliday

ratty yvain ssc commentary current-events politics culture-war harvard civil-liberty toxoplasmosis info-dynamics sanctity-degradation absolute-relative exit-voice murray higher-ed polarization tribalism volo-avolo finiteness flexibility unintended-consequences social-norms

april 2017 by nhaliday

What is the relationship between information theory and Coding theory? - Quora

february 2017 by nhaliday

basically:

- finite vs. asymptotic

- combinatorial vs. probabilistic (lotsa overlap their)

- worst-case (Hamming) vs. distributional (Shannon)

Information and coding theory most often appear together in the subject of error correction over noisy channels. Historically, they were born at almost exactly the same time - both Richard Hamming and Claude Shannon were working at Bell Labs when this happened. Information theory tends to heavily use tools from probability theory (together with an "asymptotic" way of thinking about the world), while traditional "algebraic" coding theory tends to employ mathematics that are much more finite sequence length/combinatorial in nature, including linear algebra over Galois Fields. The emergence in the late 90s and first decade of 2000 of codes over graphs blurred this distinction though, as code classes such as low density parity check codes employ both asymptotic analysis and random code selection techniques which have counterparts in information theory.

They do not subsume each other. Information theory touches on many other aspects that coding theory does not, and vice-versa. Information theory also touches on compression (lossy & lossless), statistics (e.g. large deviations), modeling (e.g. Minimum Description Length). Coding theory pays a lot of attention to sphere packing and coverings for finite length sequences - information theory addresses these problems (channel & lossy source coding) only in an asymptotic/approximate sense.

q-n-a
qra
math
acm
tcs
information-theory
coding-theory
big-picture
comparison
confusion
explanation
linear-algebra
polynomials
limits
finiteness
math.CO
hi-order-bits
synthesis
probability
bits
hamming
shannon
intricacy
nibble
s:null
signal-noise
- finite vs. asymptotic

- combinatorial vs. probabilistic (lotsa overlap their)

- worst-case (Hamming) vs. distributional (Shannon)

Information and coding theory most often appear together in the subject of error correction over noisy channels. Historically, they were born at almost exactly the same time - both Richard Hamming and Claude Shannon were working at Bell Labs when this happened. Information theory tends to heavily use tools from probability theory (together with an "asymptotic" way of thinking about the world), while traditional "algebraic" coding theory tends to employ mathematics that are much more finite sequence length/combinatorial in nature, including linear algebra over Galois Fields. The emergence in the late 90s and first decade of 2000 of codes over graphs blurred this distinction though, as code classes such as low density parity check codes employ both asymptotic analysis and random code selection techniques which have counterparts in information theory.

They do not subsume each other. Information theory touches on many other aspects that coding theory does not, and vice-versa. Information theory also touches on compression (lossy & lossless), statistics (e.g. large deviations), modeling (e.g. Minimum Description Length). Coding theory pays a lot of attention to sphere packing and coverings for finite length sequences - information theory addresses these problems (channel & lossy source coding) only in an asymptotic/approximate sense.

february 2017 by nhaliday

general topology - What should be the intuition when working with compactness? - Mathematics Stack Exchange

january 2017 by nhaliday

http://math.stackexchange.com/questions/485822/why-is-compactness-so-important

The situation with compactness is sort of like the above. It turns out that finiteness, which you think of as one concept (in the same way that you think of "Foo" as one concept above), is really two concepts: discreteness and compactness. You've never seen these concepts separated before, though. When people say that compactness is like finiteness, they mean that compactness captures part of what it means to be finite in the same way that shortness captures part of what it means to be Foo.

--

As many have said, compactness is sort of a topological generalization of finiteness. And this is true in a deep sense, because topology deals with open sets, and this means that we often "care about how something behaves on an open set", and for compact spaces this means that there are only finitely many possible behaviors.

--

Compactness does for continuous functions what finiteness does for functions in general.

If a set A is finite then every function f:A→R has a max and a min, and every function f:A→R^n is bounded. If A is compact, the every continuous function from A to R has a max and a min and every continuous function from A to R^n is bounded.

If A is finite then every sequence of members of A has a subsequence that is eventually constant, and "eventually constant" is the only kind of convergence you can talk about without talking about a topology on the set. If A is compact, then every sequence of members of A has a convergent subsequence.

q-n-a
overflow
math
topology
math.GN
concept
finiteness
atoms
intuition
oly
mathtariat
multi
discrete
gowers
motivation
synthesis
hi-order-bits
soft-question
limits
things
nibble
definition
convergence
abstraction
The situation with compactness is sort of like the above. It turns out that finiteness, which you think of as one concept (in the same way that you think of "Foo" as one concept above), is really two concepts: discreteness and compactness. You've never seen these concepts separated before, though. When people say that compactness is like finiteness, they mean that compactness captures part of what it means to be finite in the same way that shortness captures part of what it means to be Foo.

--

As many have said, compactness is sort of a topological generalization of finiteness. And this is true in a deep sense, because topology deals with open sets, and this means that we often "care about how something behaves on an open set", and for compact spaces this means that there are only finitely many possible behaviors.

--

Compactness does for continuous functions what finiteness does for functions in general.

If a set A is finite then every function f:A→R has a max and a min, and every function f:A→R^n is bounded. If A is compact, the every continuous function from A to R has a max and a min and every continuous function from A to R^n is bounded.

If A is finite then every sequence of members of A has a subsequence that is eventually constant, and "eventually constant" is the only kind of convergence you can talk about without talking about a topology on the set. If A is compact, then every sequence of members of A has a convergent subsequence.

january 2017 by nhaliday

Memento mori - Wikipedia

europe history wiki art death medieval nihil religion christianity philosophy ideology classic occident iron-age mediterranean reference concept foreign-lang article the-classics eden-heaven morality symbols zeitgeist flux-stasis humility finiteness lexical afterlife

january 2017 by nhaliday

europe history wiki art death medieval nihil religion christianity philosophy ideology classic occident iron-age mediterranean reference concept foreign-lang article the-classics eden-heaven morality symbols zeitgeist flux-stasis humility finiteness lexical afterlife

january 2017 by nhaliday

Soft analysis, hard analysis, and the finite convergence principle | What's new

january 2017 by nhaliday

It is fairly well known that the results obtained by hard and soft analysis respectively can be connected to each other by various “correspondence principles” or “compactness principles”. It is however my belief that the relationship between the two types of analysis is in fact much closer[3] than just this; in many cases, qualitative analysis can be viewed as a convenient abstraction of quantitative analysis, in which the precise dependencies between various finite quantities has been efficiently concealed from view by use of infinitary notation. Conversely, quantitative analysis can often be viewed as a more precise and detailed refinement of qualitative analysis. Furthermore, a method from hard analysis often has some analogue in soft analysis and vice versa, though the language and notation of the analogue may look completely different from that of the original. I therefore feel that it is often profitable for a practitioner of one type of analysis to learn about the other, as they both offer their own strengths, weaknesses, and intuition, and knowledge of one gives more insight[4] into the workings of the other. I wish to illustrate this point here using a simple but not terribly well known result, which I shall call the “finite convergence principle” (thanks to Ben Green for suggesting this name; Jennifer Chayes has also suggested the “metastability principle”). It is the finitary analogue of an utterly trivial infinitary result – namely, that every bounded monotone sequence converges – but sometimes, a careful analysis of a trivial result can be surprisingly revealing, as I hope to demonstrate here.

gowers
mathtariat
math
math.CA
expert
reflection
philosophy
meta:math
logic
math.CO
lens
big-picture
symmetry
limits
finiteness
nibble
org:bleg
coarse-fine
metameta
convergence
expert-experience
january 2017 by nhaliday

Useful Math | Academically Interesting

math academia list roadmap machine-learning tcs yoga acm synthesis metabuch clever-rats ratty scholar-pack top-n hi-order-bits levers 🎓 👳 pre-2013 acmtariat big-picture org:bleg nibble metameta impact meta:math skeleton s:*** p:*** applications chart knowledge studying prioritizing ideas track-record checklists tricki problem-solving optimization differential linear-algebra probability stochastic-processes martingale estimate math.CA series approximation deep-learning graphs graph-theory graphical-models model-class pigeonhole-markov linearity atoms distribution entropy-like dimensionality homogeneity spectral fourier arrows finiteness math.GN topology smoothness measure manifolds curvature concept conceptual-vocab convexity-curvature confluence toolkit apollonian-dionysian pragmatic telos-atelos ends-means quixotic

february 2016 by nhaliday

math academia list roadmap machine-learning tcs yoga acm synthesis metabuch clever-rats ratty scholar-pack top-n hi-order-bits levers 🎓 👳 pre-2013 acmtariat big-picture org:bleg nibble metameta impact meta:math skeleton s:*** p:*** applications chart knowledge studying prioritizing ideas track-record checklists tricki problem-solving optimization differential linear-algebra probability stochastic-processes martingale estimate math.CA series approximation deep-learning graphs graph-theory graphical-models model-class pigeonhole-markov linearity atoms distribution entropy-like dimensionality homogeneity spectral fourier arrows finiteness math.GN topology smoothness measure manifolds curvature concept conceptual-vocab convexity-curvature confluence toolkit apollonian-dionysian pragmatic telos-atelos ends-means quixotic

february 2016 by nhaliday

**related tags**

Copy this bookmark: