**nhaliday + big-list + differential**
2

soft question - Fundamental Examples - MathOverflow

q-n-a overflow math examples list big-list ground-up synthesis big-picture nibble database top-n hi-order-bits logic physics math.CA math.CV differential math.FA algebra math.NT probability math.DS geometry topology graph-theory math.CO tcs cs social-science game-theory GT-101 stats elegance

january 2017 by nhaliday

q-n-a overflow math examples list big-list ground-up synthesis big-picture nibble database top-n hi-order-bits logic physics math.CA math.CV differential math.FA algebra math.NT probability math.DS geometry topology graph-theory math.CO tcs cs social-science game-theory GT-101 stats elegance

january 2017 by nhaliday

ho.history overview - Proofs that require fundamentally new ways of thinking - MathOverflow

january 2017 by nhaliday

my favorite:

Although this has already been said elsewhere on MathOverflow, I think it's worth repeating that Gromov is someone who has arguably introduced more radical thoughts into mathematics than anyone else. Examples involving groups with polynomial growth and holomorphic curves have already been cited in other answers to this question. I have two other obvious ones but there are many more.

I don't remember where I first learned about convergence of Riemannian manifolds, but I had to laugh because there's no way I would have ever conceived of a notion. To be fair, all of the groundwork for this was laid out in Cheeger's thesis, but it was Gromov who reformulated everything as a convergence theorem and recognized its power.

Another time Gromov made me laugh was when I was reading what little I could understand of his book Partial Differential Relations. This book is probably full of radical ideas that I don't understand. The one I did was his approach to solving the linearized isometric embedding equation. His radical, absurd, but elementary idea was that if the system is sufficiently underdetermined, then the linear partial differential operator could be inverted by another linear partial differential operator. Both the statement and proof are for me the funniest in mathematics. Most of us view solving PDE's as something that requires hard work, involving analysis and estimates, and Gromov manages to do it using only elementary linear algebra. This then allows him to establish the existence of isometric embedding of Riemannian manifolds in a wide variety of settings.

q-n-a
overflow
soft-question
big-list
math
meta:math
history
insight
synthesis
gowers
mathtariat
hi-order-bits
frontier
proofs
magnitude
giants
differential
geometry
limits
flexibility
nibble
degrees-of-freedom
big-picture
novelty
zooming
big-surf
wild-ideas
metameta
courage
convergence
ideas
innovation
the-trenches
discovery
creative
elegance
Although this has already been said elsewhere on MathOverflow, I think it's worth repeating that Gromov is someone who has arguably introduced more radical thoughts into mathematics than anyone else. Examples involving groups with polynomial growth and holomorphic curves have already been cited in other answers to this question. I have two other obvious ones but there are many more.

I don't remember where I first learned about convergence of Riemannian manifolds, but I had to laugh because there's no way I would have ever conceived of a notion. To be fair, all of the groundwork for this was laid out in Cheeger's thesis, but it was Gromov who reformulated everything as a convergence theorem and recognized its power.

Another time Gromov made me laugh was when I was reading what little I could understand of his book Partial Differential Relations. This book is probably full of radical ideas that I don't understand. The one I did was his approach to solving the linearized isometric embedding equation. His radical, absurd, but elementary idea was that if the system is sufficiently underdetermined, then the linear partial differential operator could be inverted by another linear partial differential operator. Both the statement and proof are for me the funniest in mathematics. Most of us view solving PDE's as something that requires hard work, involving analysis and estimates, and Gromov manages to do it using only elementary linear algebra. This then allows him to establish the existence of isometric embedding of Riemannian manifolds in a wide variety of settings.

january 2017 by nhaliday

**related tags**

Copy this bookmark: