nhaliday + big-list + differential   2

ho.history overview - Proofs that require fundamentally new ways of thinking - MathOverflow
my favorite:
Although this has already been said elsewhere on MathOverflow, I think it's worth repeating that Gromov is someone who has arguably introduced more radical thoughts into mathematics than anyone else. Examples involving groups with polynomial growth and holomorphic curves have already been cited in other answers to this question. I have two other obvious ones but there are many more.

I don't remember where I first learned about convergence of Riemannian manifolds, but I had to laugh because there's no way I would have ever conceived of a notion. To be fair, all of the groundwork for this was laid out in Cheeger's thesis, but it was Gromov who reformulated everything as a convergence theorem and recognized its power.

Another time Gromov made me laugh was when I was reading what little I could understand of his book Partial Differential Relations. This book is probably full of radical ideas that I don't understand. The one I did was his approach to solving the linearized isometric embedding equation. His radical, absurd, but elementary idea was that if the system is sufficiently underdetermined, then the linear partial differential operator could be inverted by another linear partial differential operator. Both the statement and proof are for me the funniest in mathematics. Most of us view solving PDE's as something that requires hard work, involving analysis and estimates, and Gromov manages to do it using only elementary linear algebra. This then allows him to establish the existence of isometric embedding of Riemannian manifolds in a wide variety of settings.
q-n-a  overflow  soft-question  big-list  math  meta:math  history  insight  synthesis  gowers  mathtariat  hi-order-bits  frontier  proofs  magnitude  giants  differential  geometry  limits  flexibility  nibble  degrees-of-freedom  big-picture  novelty  zooming  big-surf  wild-ideas  metameta  courage  convergence  ideas  innovation  the-trenches  discovery  creative  elegance 
january 2017 by nhaliday

bundles : mathmetasp

Copy this bookmark:



description:


tags: