nhaliday + 80000-hours   34

Information Processing: US Needs a National AI Strategy: A Sputnik Moment?
FT podcasts on US-China competition and AI: http://infoproc.blogspot.com/2018/05/ft-podcasts-on-us-china-competition-and.html

A new recommended career path for effective altruists: China specialist: https://80000hours.org/articles/china-careers/
Our rough guess is that it would be useful for there to be at least ten people in the community with good knowledge in this area within the next few years.

By “good knowledge” we mean they’ve spent at least 3 years studying these topics and/or living in China.

We chose ten because that would be enough for several people to cover each of the major areas listed (e.g. 4 within AI, 2 within biorisk, 2 within foreign relations, 1 in another area).

AI Policy and Governance Internship: https://www.fhi.ox.ac.uk/ai-policy-governance-internship/

Deciphering China’s AI Dream
The context, components, capabilities, and consequences of
China’s strategy to lead the world in AI

Europe’s AI delusion: https://www.politico.eu/article/opinion-europes-ai-delusion/
Brussels is failing to grasp threats and opportunities of artificial intelligence.

When the computer program AlphaGo beat the Chinese professional Go player Ke Jie in a three-part match, it didn’t take long for Beijing to realize the implications.

If algorithms can already surpass the abilities of a master Go player, it can’t be long before they will be similarly supreme in the activity to which the classic board game has always been compared: war.

As I’ve written before, the great conflict of our time is about who can control the next wave of technological development: the widespread application of artificial intelligence in the economic and military spheres.


If China’s ambitions sound plausible, that’s because the country’s achievements in deep learning are so impressive already. After Microsoft announced that its speech recognition software surpassed human-level language recognition in October 2016, Andrew Ng, then head of research at Baidu, tweeted: “We had surpassed human-level Chinese recognition in 2015; happy to see Microsoft also get there for English less than a year later.”


One obvious advantage China enjoys is access to almost unlimited pools of data. The machine-learning technologies boosting the current wave of AI expansion are as good as the amount of data they can use. That could be the number of people driving cars, photos labeled on the internet or voice samples for translation apps. With 700 or 800 million Chinese internet users and fewer data protection rules, China is as rich in data as the Gulf States are in oil.

How can Europe and the United States compete? They will have to be commensurately better in developing algorithms and computer power. Sadly, Europe is falling behind in these areas as well.


Chinese commentators have embraced the idea of a coming singularity: the moment when AI surpasses human ability. At that point a number of interesting things happen. First, future AI development will be conducted by AI itself, creating exponential feedback loops. Second, humans will become useless for waging war. At that point, the human mind will be unable to keep pace with robotized warfare. With advanced image recognition, data analytics, prediction systems, military brain science and unmanned systems, devastating wars might be waged and won in a matter of minutes.


The argument in the new strategy is fully defensive. It first considers how AI raises new threats and then goes on to discuss the opportunities. The EU and Chinese strategies follow opposite logics. Already on its second page, the text frets about the legal and ethical problems raised by AI and discusses the “legitimate concerns” the technology generates.

The EU’s strategy is organized around three concerns: the need to boost Europe’s AI capacity, ethical issues and social challenges. Unfortunately, even the first dimension quickly turns out to be about “European values” and the need to place “the human” at the center of AI — forgetting that the first word in AI is not “human” but “artificial.”

US military: "LOL, China thinks it's going to be a major player in AI, but we've got all the top AI researchers. You guys will help us develop weapons, right?"

US AI researchers: "No."

US military: "But... maybe just a computer vision app."

US AI researchers: "NO."

AI-risk was a mistake.
hsu  scitariat  commentary  video  presentation  comparison  usa  china  asia  sinosphere  frontier  technology  science  ai  speedometer  innovation  google  barons  deepgoog  stories  white-paper  strategy  migration  iran  human-capital  corporation  creative  alien-character  military  human-ml  nationalism-globalism  security  investing  government  games  deterrence  defense  nuclear  arms  competition  risk  ai-control  musk  optimism  multi  news  org:mag  europe  EU  80000-hours  effective-altruism  proposal  article  realness  offense-defense  war  biotech  altruism  language  foreign-lang  philosophy  the-great-west-whale  enhancement  foreign-policy  geopolitics  anglo  jobs  career  planning  hmm  travel  charity  tech  intel  media  teaching  tutoring  russia  india  miri-cfar  pdf  automation  class  labor  polisci  society  trust  n-factor  corruption  leviathan  ethics  authoritarianism  individualism-collectivism  revolution  economics  inequality  civic  law  regulation  data  scale  pro-rata  capital  zero-positive-sum  cooperate-defect  distribution  time-series  tre 
february 2018 by nhaliday
Will Your Job Be Done By A Machine? : Planet Money : NPR
news  org:mag  automation  economics  objektbuch  prediction  database  search  data  technology  dynamic  planning  definite-planning  speedometer  tools  the-bones  labor  calculator  org:rec  org:anglo  org:biz  visualization  distribution  trends  heavy-industry  80000-hours  analysis  econotariat  cracker-econ  commentary  left-wing  multi  org:sci  chart  longform  investing  money  scale  org:edu  ratty  futurism  iteration-recursion  multiplicative  autor 
january 2017 by nhaliday
How to do career planning properly - 80,000 Hours
- A/B/Z plans
- make a list of red flags and commit to reviewing at some point (and at some interval)
advice  strategy  career  planning  80000-hours  long-term  thinking  guide  summary  checklists  rat-pack  tactics  success  working-stiff  flexibility  wire-guided  progression  ratty 
november 2016 by nhaliday

bundles : growthpeeps

related tags

80000-hours  academia  advice  age-generation  aging  agriculture  ai  ai-control  akrasia  algorithms  alien-character  alignment  altruism  analysis  anglo  anglosphere  arms  article  asia  attention  audio  authoritarianism  automation  autor  backup  barons  biases  biotech  bostrom  brands  britain  calculator  capital  career  charity  chart  checklists  china  civic  clarity  class  cog-psych  commentary  comparison  compensation  competition  computer-vision  contrarianism  cooperate-defect  coordination  corporation  corruption  cost-benefit  cracker-econ  creative  crime  criminal-justice  criminology  cynicism-idealism  data  database  death  deepgoog  defense  definite-planning  dennett  detail-architecture  deterrence  discipline  discussion  distribution  dynamic  econometrics  economics  econotariat  education  effective-altruism  efficiency  elections  emotion  ems  enhancement  error  essay  estimate  ethics  EU  europe  evidence-based  externalities  finance  flexibility  focus  foreign-lang  foreign-policy  frontier  futurism  gallic  game-theory  games  geopolitics  gnon  google  government  grad-school  gray-econ  growth  growth-econ  gtd  guide  hacker  hanson  hardware  healthcare  heavy-industry  hidden-motives  high-variance  higher-ed  hmm  hsu  human-capital  human-ml  humility  hypocrisy  illusion  impact  impetus  impro  india  individualism-collectivism  industrial-org  inequality  innovation  institutions  intel  intervention  interview  investing  iran  iteration-recursion  japan  jobs  knowledge  labor  language  law  left-wing  legacy  leviathan  links  list  local-global  long-term  longform  machine-learning  macro  management  measurement  media  medicine  meta:medicine  meta:prediction  meta:war  metameta  micro  migration  military  miri-cfar  money  morality  multi  multiplicative  musk  n-factor  nationalism-globalism  near-far  news  nuclear  objektbuch  offense-defense  optimism  org:anglo  org:biz  org:edu  org:lite  org:mag  org:ngo  org:rec  org:sci  organization  outcome-risk  p:whenever  paying-rent  pdf  peace-violence  phd  philosophy  planning  podcast  policy  polisci  prediction  prediction-markets  presentation  prioritizing  priors-posteriors  privacy  pro-rata  productivity  progression  property-rights  proposal  psychology  quiz  ranking  rat-pack  rationality  ratty  realness  recruiting  regularizer  regulation  rent-seeking  revolution  rhetoric  risk  robotics  russia  s:*  scale  science  scitariat  search  securities  security  self-interest  signal-noise  signaling  sinosphere  skunkworks  social  social-choice  social-norms  social-science  society  sociology  software  speedometer  spock  stamina  startups  stories  strategy  stream  street-fighting  stress  study  success  summary  survey  sv  tactics  tcs  teaching  tech  technology  tetlock  the-bones  the-great-west-whale  the-self  theory-of-mind  thinking  threat-modeling  time-series  time-use  tip-of-tongue  tools  top-n  trade  travel  trends  trust  tutoring  twitter  uncertainty  usa  video  virtu  visualization  war  white-paper  wire-guided  within-without  wonkish  working-stiff  X-not-about-Y  zero-positive-sum  🎓  🐸  🖥  🦉 

Copy this bookmark: