jm + unsupervised-learning   2

Fast Forward Labs: Fashion Goes Deep: Data Science at Lyst
this is more than just data science really -- this is proper machine learning, with deep learning and a convolutional neural network. serious business
lyst  machine-learning  data-science  ml  neural-networks  supervised-learning  unsupervised-learning  deep-learning 
december 2015 by jm
'Histogram-based Outlier Score (HBOS): A fast Unsupervised Anomaly Detection Algorithm' [PDF]
'Unsupervised anomaly detection is the process of finding outliers in data sets without prior training. In this paper, a histogram-based outlier detection (HBOS) algorithm is presented, which scores records in linear time. It assumes independence of the features making it much faster than multivariate approaches at the cost of less precision. A comparative evaluation on three UCI data sets and 10 standard algorithms show, that it can detect global outliers as reliable as state-of-the-art algorithms, but it performs poor on local outlier problems. HBOS is in our experiments up to 5 times faster than clustering based algorithms and up to 7 times faster than nearest-neighbor based methods.'
histograms  anomaly-detection  anomalies  machine-learning  algorithms  via:paperswelove  outliers  unsupervised-learning  hbos 
november 2014 by jm

Copy this bookmark:



description:


tags: