jm + transactions + synchronization   1

Scalable Atomic Visibility with RAMP Transactions
Great new distcomp protocol work from Peter Bailis et al:
We’ve developed three new algorithms—called Read Atomic Multi-Partition (RAMP) Transactions—for ensuring atomic visibility in partitioned (sharded) databases: either all of a transaction’s updates are observed, or none are. [...]

How they work: RAMP transactions allow readers and writers to proceed concurrently. Operations race, but readers autonomously detect the races and repair any non-atomic reads. The write protocol ensures readers never stall waiting for writes to arrive.

Why they scale: Clients can’t cause other clients to stall (via synchronization independence) and clients only have to contact the servers responsible for items in their transactions (via partition independence). As a consequence, there’s no mutual exclusion or synchronous coordination across servers.

The end result: RAMP transactions outperform existing approaches across a variety of workloads, and, for a workload of 95% reads, RAMP transactions scale to over 7 million ops/second on 100 servers at less than 5% overhead.
scale  synchronization  databases  distcomp  distributed  ramp  transactions  scalability  peter-bailis  protocols  sharding  concurrency  atomic  partitions 
april 2014 by jm

Copy this bookmark: