jm + dnns   1

When DNNs go wrong – adversarial examples and what we can learn from them
Excellent paper.
[The] results suggest that classifiers based on modern machine learning techniques, even those that obtain excellent performance on the test set, are not learning the true underlying concepts that determine the correct output label. Instead, these algorithms have built a Potemkin village that works well on naturally occuring data, but is exposed as a fake when one visits points in space that do not have high probability in the data distribution.
ai  deep-learning  dnns  neural-networks  adversarial-classification  classification  classifiers  machine-learning  papers 
23 days ago by jm

Copy this bookmark: