jm + chips + security   3

The Big Hack: How China Used a Tiny Chip to Infiltrate U.S. Companies - Bloomberg
Nested on the servers’ motherboards, the testers found a tiny microchip, not much bigger than a grain of rice, that wasn’t part of the boards’ original design. [...] investigators determined that the chips allowed the attackers to create a stealth doorway into any network that included the altered machines. Multiple people familiar with the matter say investigators found that the chips had been inserted at factories run by manufacturing subcontractors in China.
chips  security  technology  china  subcontracting  business  hardware  hacking  amazon  supermicro  manufacturing  supply-chains 
october 2018 by jm
How a criminal ring defeated the secure chip-and-PIN credit cards | Ars Technica
Ingenious --
The stolen cards were still considered evidence, so the researchers couldn’t do a full tear-down or run any tests that would alter the data on the card, so they used X-ray scans to look at where the chip cards had been tampered with. They also analyzed the way the chips distributed electricity when in use and used read-only programs to see what information the cards sent to a Point of Sale (POS) terminal.

According to the paper, the fraudsters were able to perform a man-in-the-middle attack by programming a second hobbyist chip called a FUN card to accept any PIN entry, and soldering that chip onto the card’s original chip. This increased the thickness of the chip from 0.4mm to 0.7mm, "making insertion into a PoS somewhat uneasy but perfectly feasible,” the researchers write. [....]

The researchers explain that a typical EMV transaction involves three steps: card authentication, cardholder verification, and then transaction authorization. During a transaction using one of the altered cards, the original chip was allowed to respond with the card authentication as normal. Then, during card holder authentication, the POS system would ask for a user’s PIN, the thief would respond with any PIN, and the FUN card would step in and send the POS the code indicating that it was ok to proceed with the transaction because the PIN checked out. During the final transaction authentication phase, the FUN card would relay the transaction data between the POS and the original chip, sending the issuing bank an authorization request cryptogram which the card issuer uses to tell the POS system whether to accept the transaction or not.
security  chip-and-pin  hacking  pos  emv  transactions  credit-cards  debit-cards  hardware  chips  pin  fun-cards  smartcards 
october 2015 by jm
Breakthrough silicon scanning discovers backdoor in military chip [PDF]
Wow, I'd missed this:

This paper is a short summary of the first real world detection of a backdoor in a military grade FPGA. Using an innovative patented technique we were able to detect and analyse in the first documented case of its kind, a backdoor inserted into the Actel/Microsemi ProASIC3 chips for accessing FPGA configuration. The backdoor was
found amongst additional JTAG functionality and exists on the silicon itself, it was not present in any firmware loaded onto the chip. Using Pipeline Emission Analysis (PEA), our pioneered technique, we were able to extract the secret key to activate the backdoor, as well as other security keys such as the AES and the Passkey. This way an attacker can extract all the configuration data from the chip, reprogram crypto and access keys, modify low-level silicon features, access unencrypted configuration bitstream or permanently damage the device. Clearly this
means the device is wide open to intellectual property (IP) theft, fraud, re-programming as well as reverse engineering of the design which allows the introduction of a new backdoor or Trojan. Most concerning, it is
not possible to patch the backdoor in chips already deployed, meaning those using this family of chips have to accept the fact they can be easily compromised or will have to be physically replaced after a redesign of the silicon itself.
chips  hardware  backdoors  security  scanning  pea  jtag  actel  microsemi  silicon  fpga  trojans 
july 2013 by jm

Copy this bookmark:



description:


tags: