jerid.francom + twitter   66

Characterizing Twitter followers with tidytext | R-bloggers
Lately, I have been more and more taken with tidy principles of data analysis. They are elegant and make analyses clearer and easier to comprehend. Following
r  r-bloggers  tidytext  twitter  topicModel  sentiment  network-analysis  380  textbook 
june 2017 by jerid.francom
Who is talking about the French Open? | R-bloggers
I don’t think rOpenSci’s Jeroen Ooms can ever top the coolness of his magick package but I have to admit other things he’s developped are not bad at all. He’s
twitter  r  language  detection  cldr  tutorials 
june 2017 by jerid.francom
Analysing the Twitter Mentions Network
By Douglas Ashton, Consultant One of the big successes of data analytics is the cultural change in how business decisions are being made. There is now wide
r  network  analysis  twitter  datascience 
october 2016 by jerid.francom
Text analysis of Trump’s tweets confirms he writes only the (angrier) Android half
I don’t normally post about politics (I’m not particularly savvy about polling, which is where data science has had the largest impact on politics). But this
380  twitter  politics  trump  TextAnalytics 
august 2016 by jerid.francom
Twitter's new R package for anomaly detection
For Twitter, finding anomalies — sudden spikes or dips — in a time series is important to keep the microblogging service running smoothly. A sudden spike in shared photos may signify an "trending" event, whereas a sudden dip in posts might represent a failure in one of the back-end services that needs to be addressed. To detect such anomalies, the engineering team at Twitter created the AnomalyDetection R package, which they recently released as open source. (Late last year Twitter released a separate but related R package to detect "breakouts" in time series.) Finding spikes and dips is relatively easy...
r  twitter  package 
january 2015 by jerid.francom
Twitter Word Cloud
Turn Your Twitter Timeline into a Word Cloud Using Python
twitter  python  wordclouds  api  timeline  mask 
december 2014 by jerid.francom
Command line one-liners | Arturo Herrero
Favorite tweet:

A handy collection of Unix one-liners:

— Jason Baldridge (@jasonbaldridge) December 10, 2013
IFTTT  Twitter  unix 
december 2013 by jerid.francom
[no title]
Here's our presentation on "Gender, styles, and social networks in Twitter": #nwav41
twitter  gender  prediction  380  computation  nwav41 
october 2012 by jerid.francom
Data Reveals That “Occupying” Twitter Trending Topics is Harder Than it Looks!
Data Reveals That “Occupying” Twitter Trending Topics is Harder Than it Looks! via @zite
algorithm  twitter  380  trending 
october 2011 by jerid.francom

related tags

aaai2015  accomodation  aggregator  algorithm  amazon  analysis  api  archives  big  classification  cldr  clustering  code  computation  corpora  corpus  culturomics  data  datamining  datascience  demographics  design  detection  dh  digitalhumanities  documentation  ebay  emotions  events  excel  facebook  fee-based  food  gender  geolocation  ggplot2  google  historical  howto  IFTTT  igraph  industry  interface  isitold  java  k-means  language  leaflet  linguistics  linkeddata  literacy  machine_learning  mapping  maps  marketing  mask  media  metadata  mining  modeling  monitoring  network  network-analysis  nlp  normalization  nwav41  opensource  package  php  politics  prediction  processing  psychology  publication  publications  python  r  r-bloggers  rchart  research  researchers  roauth  search  sentiment  social  social-media  socialmedia  sociology  spanish  statistics  stream  streaming  streamR  subtitles  text  TextAnalytics  textbook  tidytext  time-zones  timeline  tokenizer  tools  topic  topicModel  tracking  translation  trending  trump  tutorial  tutorials  tweepy  twitris  twitter  unix  users  varieties  visualization  web2.0  webcrawling  wordclouds 

Copy this bookmark: