jerid.francom + machinelearning   47

Clustering Search Keywords Using K-Means Clustering
One of the key tenets to doing impactful digital analysis is understanding what your visitors are trying to accomplish. One of the easiest methods to do this is
r  380  clustering  machinelearning 
october 2016 by jerid.francom
awesome-machine-learning - A curated list of awesome Machine Learning frameworks, libraries and software.
machinelearning  380  r  tools  software  nlp 
october 2016 by jerid.francom
'Babel fish' universal translator no longer just quirky sci-fi concept
New technologies are reviving lost languages and breaking language barriers in ways previously dreamt up in quirky science fiction.
150  machinelearning  google  translation 
october 2016 by jerid.francom
U.S. Presidential Debates Through the Eyes of a Computer | CrowdFlower
Of the presidential talks for each candidate from the last debate, which moments are most consistent with everything they’ve said up to then?
380  machinelearning  politics  prediction  author  detection 
october 2016 by jerid.francom
The Mathematics of Machine Learning | R-bloggers
This post was first published on my Linkedin page and posted here as a contributed post. In the last few months, I have had several people contact me
machinelearning  statistics  380 
july 2016 by jerid.francom
LeaRning Path on R - Step by Step Guide to Learn Data Science on R
Learning path on R provides a step by step guide to become a data scientist using R. The path includes exercises, tutorials & best practices
r  learning  learnR  data  mining  visualization  performance  clustering  machinelearning 
march 2015 by jerid.francom
ŷhat | Naive Bayes in Python
Naive Bayes classification is a simple, yet
effective algorithm. It's commonly used in things like text analytics and works well on both
small datasets and massively scaled out, distributed systems.
How does it work?
Naive Bayes is based on, you guessed it, Bayes' theorem.
Think back to your first statistics class. Bayes' theorem was that seemingly
counterintuitive lecture on conditional probability.

I've tried to buy this on multiple occasions, but to no avail :(. Please email me if you ...
python  bayes  bayesian  machineLearning 
february 2015 by jerid.francom
Justin Bieber Brings Natural Language Processing to the Masses
Justin Bieber Brings Natural Language Processing to the Masses via @zite
nlp  380  linguistics  machinelearning  languages  via:zite 
november 2011 by jerid.francom

related tags

ai  alignment  analytics  author  bayes  bayesian  bernoulli  books  caret  chomsky  classification  clustering  collaboration  community  comp-ling  computation  computer-science  courses  cran  data  datamining  datascience  dataset  decision-trees  detection  diacritics  dialect  ebook  education  example  google  gui  hadoop  javascript  k-nn  kernel-density  language  languages  learning  learnR  linguistics  logistic-regression  machinelearning  machinetranlsation  mapreduce  maps  mining  moses  naive_bayes  network  news  nlp  opensource  packages  pandas  perceptron  performance  politics  practice  prediction  programming  python  r  rattle  reference  regression  reproducible  research  resources  restoration  scikit  scikit-learn  shiny  simulation  software  spanish  stanford  statistics  teaching  tensors  text  text-classification  TextAnalytics  textbook  theory  tm  tools  translation  tuning  tutorial  tutorials  underlfow  unsupervised  via:zite  videos  visualization  wikibooks  wordclouds 

Copy this bookmark: