word2vec   1646

« earlier    

Word Representations via Gaussian Embedding
Luke Vilnis
Andrew McCallum
University of Massachusetts Amherst
2 days ago by hustwj
Contribute to conceptnet-numberbatch development by creating an account on GitHub.
11 days ago by pmigdal
Learning Composition Models for Phrase Embeddings
Mo Yu
Machine Intelligence
& Translation Lab
Harbin Institute of Technology
Harbin, China
Mark Dredze
Human Language Technology Center of Excellence
Center for Language and Speech Processing
Johns Hopkins University
Baltimore, MD, 21218
15 days ago by hustwj
Adaptive Joint Learning of Compositional and Non-Compositional Phrase Embeddings
Kazuma Hashimoto and Yoshimasa Tsuruoka
The University of Tokyo, 3-7-1 Hongo, Bunkyo-ku, Tokyo, Japan
15 days ago by hustwj

« earlier    

related tags

2014  2016  ai  algorithms  analysis  azure  bayesian  bigdata  bioinformatics  candidate  careerbuilder  clustering  computing  conceptnet  contest  counts  dataset  datasets  dbpedia  deep-learning  deeplearning  del-dup?  demos  development  discourse  discussion  doc2vec  embedded  embedding  embeddings  entityextraction  evaluation  example  expansion  facebook  factorization  fasttext  file  format  gendered  generative  generators  gensim  glove  google  health  history  ir  job  kaggle  keras  ketchum  language-models  language  lda  learning  linguistics  machine  machinelearning  matrix  medicine  ml  modeling  modelling  negative-sampling  nlp  nlproc  normalization  opensource  paper  pmi  python  q&a  query-expansion  query  r  ranking  recommendation  references  research  reviews  russian  search  semantic  sentence2vec  sentiment  session2vec  similarity  slides  softmax  solr  spark  stitch-fix  teaching  tensor  tensorflow  text  textanalysis  theory  thesis  title  tools  topic  topics  tracery  training  transferlearning  tutorials  vectors  visualisation  visualization  vs  wiki2vec  wikipedia  word  wordembedding  wordembeddings 

Copy this bookmark: