visualization   284367

« earlier    

Designing for Data Visualization – Design at IBM – Medium
Arin Bhowmick – Как визуализируют сложную графику, данные в IBM
Data  ibm  visualization  data+visualisation  tables  infographic 
3 hours ago by akimkin
Claus O. Wilke, Fundamentals of Data Visualization
The book is meant as a guide to making visualizations that accurately reflect the data, tell a story, and look professional. It has grown out of my experience of working with students and postdocs in my laboratory on thousands of data visualizations. Over the years, I have noticed that the same issues arise over and over. I have attempted to collect my accumulated knowledge from these interactions in the form of this book.
ggplot2  Visualization 
8 hours ago by vivalosburros
GAN Lab: Play with Generative Adversarial Networks in Your Browser!
GAN Lab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation
machine-learning  ai  ml  generative-adversarial-networks  visualization 
12 hours ago by jonmoore
For Example (Mike Bostock)
Mike's amazing essay about how he shares lots of examples while working on a project
17 hours ago by amitp
GitHub - ChrisKnott/Algojammer: An experimental code editor for writing algorithms

Algojammer is an experimental, proof-of-concept code editor for writing algorithms in Python. It was mainly written to assist with solving the kind of algorithm problems that feature in competitions like Google Code Jam, Topcoder and HackerRank.
Inspired by Bret Victor's talks
editor  python  visualization 
18 hours ago by amitp
[1710.00992] DimReader: Axis lines that explain non-linear projections
Non-linear dimensionality reduction (NDR) methods such as LLE and t-SNE are popular with visualization researchers and experienced data analysts, but present serious problems of interpretation. In this paper, we present DimReader, a technique that recovers readable axes from such techniques. DimReader is based on analyzing infinitesimal perturbations of the dataset with respect to variables of interest. The perturbations define exactly how we want to change each point in the original dataset and we measure the effect that these changes have on the projection. The recovered axes are in direct analogy with the axis lines (grid lines) of traditional scatterplots. We also present methods for discovering perturbations on the input data that change the projection the most. The calculation of the perturbations is efficient and easily integrated into programs written in modern programming languages. We present results of DimReader on a variety of NDR methods and datasets both synthetic and real-life, and show how it can be used to compare different NDR methods. Finally, we discuss limitations of our proposal and situations where further research is needed.
user-interface  visualization  dimension-reduction  rather-interesting  data-analysis  explanation  the-mangle-in-practice  to-write-about  to-do 
yesterday by Vaguery

« earlier    

related tags

3d  administration  ai  algebraic-topology  amusic  analysis  analytics  animation  api  apple  art  astronomy  audio  awards  aws  bi  bioinformatics  book  books  browser  business  car  chart  charts  children  circos  cloud  cloudcomputing  code  color  complexity  d3  d3js  dariah  dashboard  dashboards  data+visualisation  data-analysis  data-science  data  data_science  data_visualization  database  datasci  datavisualisation  dataviz  debugging  deeplearning  design  differential-geometry  dimension-reduction  dot  economy  editor  editors  example  explanation  explorables  f#  favorites  feminism  flame  flamegraphs  flask  forseti  gallery  gamma  gcp  generative-adversarial-networks  geo/us  geography  geospatial  geoviz-choropleth  geoviz-graduated-proportional-symbol  german  ggplot2  gis  git  github  golang  googleapps  graph  graphicdesign  graphql  graphs  grography  housing  ibm  idyll  images  infographic  infoviz  inspiration  interactive  ixd  javascript  js  kids  language  leipzig  library  linalg  linux  machine-learning  machine_learning  machinelearning  map  mapbox  mapping  maps  markdow  math  mathematics  matlib  me  memory  microsoft  ml  monitoring  mountain  music  nature  neuroscience  notebook  nyc  nytimes  online  open-source  opensource  p-city-data  perf  performance  plot  plots  printing  problem  process  profiling  programme  programming  project  projection  property  publication  publishing  python  pytorch  r.package  r.packages  r  race  rather-interesting  react  reactjs  readlater  reference  renters  reproducibility  research  resources  saas  safety  schema  science  server  service  shiny  simulation  software  sound  space  spatial_science  sql  statistics  statistiques  sydney  systems  tables  talk  teaching  text  the-mangle-in-practice  to-do  to-write-about  to_try  tool  tools  topics  ui  uk  user-interface  ux  video  visual  visualisation  viz  vscode  webdesign  webdev 

Copy this bookmark: