statistics:networks   6

tidygraph 1.1 – A tidy hope
I am very pleased to tell you that the next version of tidygraph (1.1) is now available on CRAN. This is not a bug-fix release, nor a change-it-all release, but rather a more-of-it-all release, and in this post I’m going to tell you all about it.

The idea of tidygraph
Before we enter the goldmine of new features that makes this release I’m going to talk a bit about my reasons for making tidygraph and what I want it to become. These ideas have been rummaging in my head for a while and has taken more form as I prepared for my RStudio::conf 2018 talk. They will probably be fleshed out even more in a (series of) blog post(s), or — dare I say — a book, but you’ll get the earliest version of it here…

Network analysis is daunting… Sure, have you spend the better part of your life working with it (I haven’t) it might seem common nature, but for most people it will be an area they enter late, unprepared, and already well-versed in the manners of rectangular data analysis. For many, the instinct will be to quickly produce a plot, which will often end up creating very little insight due to the curse of the hairball, and they will leave the world of network analysis with a sense of broken promises. While all of this sounds overtly melodramatic, I honestly feel that the tools we use to do network analysis can do better in guiding the user towards a meaningful network analysis workflow and I hope that tidygraph (and ggraph) will prove to be a decent attempt at that.

With tidygraph I set out to make it easier to get your data into a graph and perform common transformations on it, but the aim has expanded since its inception. The goal of tidygraph is to empower the user to formulate complex questions regarding relational data as simple steps, thus enabling them to retrieve insights directly from the data itself. The central idea this all boils down to is this: you don’t have to plot a network to understand it. While I absolutely love the field of network visualisation, it is in many ways overused in data science — especially when it comes to extracting knowledge from a network. Just as you don’t need a plot to tell you which car in a dataset is the fastest, you don’t need a plot to tell you which pair of friends are the closest. What you do need, instead of a plot, is a tool that allow you to formulate your question into a logic sequence of operations. For many people in the world of rectangular data, this tool is increasingly dplyr (and friends), and I do hope that tidygraph can take on the same role in the world of relational data.

This is not just about preparing your data for a plot — this is about answering questions.
statistics:networks  R_packages  R  tidyverse  visualization  data_management 
february 2018 by hallucigenia
Introduction to Network Analysis with R
"Over a wide range of fields network analysis has become an increasingly popular tool for scholars to deal with the complexity of the interrelationships between actors of all sorts. The promise of network analysis is the placement of significance on the relationships between actors, rather than seeing actors as isolated entities. The emphasis on complexity, along with the creation of a variety of algorithms to measure various aspects of networks, makes network analysis a central tool for digital...
networks  r_function  r_packages  to_try  statistics:networks  visualization 
november 2017 by hallucigenia
Introducing tidygraph
I’m very pleased to announce that my new package tidygraph is now available on CRAN. As the name suggests, tidygraph is an entry into the tidyverse that provides a tidy framework for all things relational (networks/graphs, trees, etc.). tidygraph is a relatively big package in terms of exported functions (280 exported symbols) so all functions will not be covered in this release note. I will however provide an overview of all the areas that tidygraphtouches upon so you should have a pretty good grasp on what the package can do for you.
R_packages  r_hadley  networks  statistics:networks  visualization  to_try 
july 2017 by hallucigenia
Ecology: Network Models | Statistical and Applied Mathematical Sciences Institute (SAMSI)
Ecological data are often encapsulated as modular units, whether they are genes, individuals, species, communities, habitats, or ecosystem components, in both space and time. Network analysis is an interdisciplinary approach to modeling the modular units through their connectivity.
ecology  statistics  statistics:networks  networks  organization  statistics:ecological 
december 2014 by hallucigenia

related tags

books  data_management  ecology  gaussian_processes  ggplot2  graph_theory  graphics  library  math:dynamical_systems  networks  organization  r  r_function  r_hadley  r_packages  statistics  statistics:additive_models  statistics:bayesian  statistics:ecological  statistics:gams  statistics:regression  tidyverse  to_read  to_try  visualization 

Copy this bookmark: