state-of-art   59

« earlier    

(38) Pancreatic Cancer: Advances in Science and Clinical Care - YouTube
This AACR Special Conference, to be held September 21-24, 2018, in Boston, will convene world-renowned experts covering the breadth of research on pancreatic cancer, from early detection and genetics to precision medicine and immunotherapy.
healthcare  cancer  pancreas  AACR  state-of-art 
september 2018 by PieroRivizzigno
✨How to train a neural coreference model— Neuralcoref 2
The last months have been quite intense at HuggingFace 🤗 with crazy usage growth 🚀 and everybody hard at work to keep up with it 🏇, but we finally managed to free some time and update our…
coref  coreference  nlp  sota  state-of-art  deep-learning 
march 2018 by nharbour
English NLP SOTA · magizbox/underthesea Wiki
GitHub is where people build software. More than 27 million people use GitHub to discover, fork, and contribute to over 80 million projects.
ner  state-of-art  sota  deep-sleep  nlp  named-entity-recognition 
march 2018 by nharbour
Information Processing: Mathematical Theory of Deep Neural Networks (Princeton workshop)
"Recently, long-past-due theoretical results have begun to emerge. These results, and those that will follow in their wake, will begin to shed light on the properties of large, adaptive, distributed learning architectures, and stand to revolutionize how computer science and neuroscience understand these systems."
hsu  scitariat  commentary  links  research  research-program  workshop  events  princeton  sanjeev-arora  deep-learning  machine-learning  ai  generalization  explanans  off-convex  nibble  frontier  speedometer  state-of-art  big-surf  announcement 
january 2018 by nhaliday
Frontiers | Can We Validate the Results of Twin Studies? A Census-Based Study on the Heritability of Educational Achievement | Genetics
As for most phenotypes, the amount of variance in educational achievement explained by SNPs is lower than the amount of additive genetic variance estimated in twin studies. Twin-based estimates may however be biased because of self-selection and differences in cognitive ability between twins and the rest of the population. Here we compare twin registry based estimates with a census-based heritability estimate, sampling from the same Dutch birth cohort population and using the same standardized measure for educational achievement. Including important covariates (i.e., sex, migration status, school denomination, SES, and group size), we analyzed 893,127 scores from primary school children from the years 2008–2014. For genetic inference, we used pedigree information to construct an additive genetic relationship matrix. Corrected for the covariates, this resulted in an estimate of 85%, which is even higher than based on twin studies using the same cohort and same measure. We therefore conclude that the genetic variance not tagged by SNPs is not an artifact of the twin method itself.
study  biodet  behavioral-gen  iq  psychometrics  psychology  cog-psych  twin-study  methodology  variance-components  state-of-art  🌞  developmental  age-generation  missing-heritability  biases  measurement  sampling-bias  sib-study 
december 2017 by nhaliday
Genome Editing
This collection of articles from the Nature Research journals provides an overview of current progress in developing targeted genome editing technologies. A selection of protocols for using and adapting these tools in your own lab is also included.
news  org:sci  org:nat  list  links  aggregator  chart  info-foraging  frontier  technology  CRISPR  biotech  🌞  survey  state-of-art  article  study  genetics  genomics  speedometer 
october 2017 by nhaliday
[1709.06560] Deep Reinforcement Learning that Matters
https://twitter.com/WAWilsonIV/status/912505885565452288
I’ve been experimenting w/ various kinds of value function approaches to RL lately, and its striking how primitive and bad things seem to be
At first I thought it was just that my code sucks, but then I played with the OpenAI baselines and nope, it’s the children that are wrong.
And now, what comes across my desk but this fantastic paper: (link: https://arxiv.org/abs/1709.06560) arxiv.org/abs/1709.06560 How long until the replication crisis hits AI?

https://twitter.com/WAWilsonIV/status/911318326504153088
Seriously I’m not blown away by the PhDs’ records over the last 30 years. I bet you’d get better payoff funding eccentrics and amateurs.
There are essentially zero fundamentally new ideas in AI, the papers are all grotesquely hyperparameter tuned, nobody knows why it works.

Deep Reinforcement Learning Doesn't Work Yet: https://www.alexirpan.com/2018/02/14/rl-hard.html
Once, on Facebook, I made the following claim.

Whenever someone asks me if reinforcement learning can solve their problem, I tell them it can’t. I think this is right at least 70% of the time.
papers  preprint  machine-learning  acm  frontier  speedometer  deep-learning  realness  replication  state-of-art  survey  reinforcement  multi  twitter  social  discussion  techtariat  ai  nibble  org:mat  unaffiliated  ratty  acmtariat  liner-notes  critique  sample-complexity  cost-benefit  todo 
september 2017 by nhaliday
Accurate Genomic Prediction Of Human Height | bioRxiv
Stephen Hsu's compressed sensing application paper

We construct genomic predictors for heritable and extremely complex human quantitative traits (height, heel bone density, and educational attainment) using modern methods in high dimensional statistics (i.e., machine learning). Replication tests show that these predictors capture, respectively, ~40, 20, and 9 percent of total variance for the three traits. For example, predicted heights correlate ~0.65 with actual height; actual heights of most individuals in validation samples are within a few cm of the prediction.

https://infoproc.blogspot.com/2017/09/accurate-genomic-prediction-of-human.html

http://infoproc.blogspot.com/2017/11/23andme.html
I'm in Mountain View to give a talk at 23andMe. Their latest funding round was $250M on a (reported) valuation of $1.5B. If I just add up the Crunchbase numbers it looks like almost half a billion invested at this point...

Slides: Genomic Prediction of Complex Traits

Here's how people + robots handle your spit sample to produce a SNP genotype:

https://drive.google.com/file/d/1e_zuIPJr1hgQupYAxkcbgEVxmrDHAYRj/view
study  bio  preprint  GWAS  state-of-art  embodied  genetics  genomics  compressed-sensing  high-dimension  machine-learning  missing-heritability  hsu  scitariat  education  🌞  frontier  britain  regression  data  visualization  correlation  phase-transition  multi  commentary  summary  pdf  slides  brands  skunkworks  hard-tech  presentation  talks  methodology  intricacy  bioinformatics  scaling-up  stat-power  sparsity  norms  nibble  speedometer  stats  linear-models  2017  biodet 
september 2017 by nhaliday

« earlier    

related tags

2013  2016  2017  :/  aacr  abstraction  accuracy  acm  acmtariat  additive  advanced  adversarial  age-generation  aggregator  ai-control  ai  albion  analysis  announcement  applications  article  asia  aslr  atoms  attention  audio  autism  auto-learning  automation  bandits  bare-hands  bayesian  behavioral-gen  biases  big-picture  big-surf  bio  biodet  bioinformatics  biophysical-econ  biotech  blackhat  books  bots  bounded-cognition  brain-scan  brands  britain  buffer-overflow  business  cancer  candidate-gene  causation  chan  chart  chemistry  china  civil-liberty  clarity  classification  clever-rats  clojure  cog-psych  commentary  comparison  compensation  composition-decomposition  compressed-sensing  computer-vision  concept  conceptual-vocab  confounding  cool  core-rats  coref  coreference  corporation  correlation  cost-benefit  counterexample  criminal-justice  criminology  crispr  critique  crux  crypto  data-science  data  database  dataset  deep-learning  deep-sleep  deepgoog  definite-planning  degrees-of-freedom  dementia  demographics  dep  detail-architecture  developmental  differential-privacy  dimensionality  dirty-hands  discussion  disease  dropbox  economics  education  electromag  embeddings  embodied  empirical  energy-resources  engineering  enhancement  ensembles  epidemiology  equilibrium  error  essay  ethical-algorithms  europe  events  evidence-based  evolution  expert-experience  expert  explanans  explanation  exploitation  extratricky  facebook  faq  fast.ai  features  filetype:pdf  fixed-point  foreign-lang  fourier  frequency  frontier  futurism  games  generalization  generative  genetic-correlation  genetic-load  genetics  genomics  gnxp  google  government  gradient-descent  graphical-models  graphs  gwas  gwern  hard-tech  hardware  healthcare  heap-overflow  heavy-industry  high-dimension  history  hmm  hsu  huge-data-the-biggest  hypothesis-testing  ideas  identity  impact  impetus  industrial-org  info-foraging  init  innovation  intel  intelligence  interdisciplinary  interview  intricacy  ioannidis  iq  iteration-recursion  js  kinship  language  latent-variables  leaderboard  legibility  len:short  lens  let-me-see  levers  leviathan  linear-models  linearity  liner-notes  links  list  longevity  lower-bounds  machine-learning  managerial-state  market-power  matching  measurement  media:document  medicine  mendel-randomization  meta-analysis  meta:medicine  meta:science  methodology  metrics  michael-nielsen  microsoft  miri-cfar  missing-heritability  model-class  multi  multiplicative  named-entity-recognition  ner  neuro-nitgrit  neuro  neurons  new-religion  news  nibble  nlp  no-go  nonlinearity  nordic  norms  novelty  off-convex  oly  online-learning  openai  org:bleg  org:inst  org:mag  org:mat  org:nat  org:rec  org:sci  overflow  pancreas  papers  paternal-age  pdf  performance  perturbation  phase-transition  phys-energy  plots  poast  pop-structure  popsci  population-genetics  population  prediction  preprint  presentation  princeton  privacy  project  proposal  protocol  psychiatry  psychology  psychometrics  q-n-a  qra  qtl  quora  random-matrices  ratty  realness  recommendations  reddit  reference  reflection  regression  regularization  regulation  reinforcement  replication  research-program  research  return-to-libc  rhetoric  risk  robust  roots  rot  s:*  sales-force  sample-complexity  sampling-bias  sampling  sanjeev-arora  sapiens  scale  scaling-up  scitariat  search  security  sensitivity  sequential  shift  sib-study  simulation  singularity  skunkworks  slides  smoothness  social  soft-question  software  sota  spacy  sparsity  speaking  spearhead  speculation  speedometer  spock  spreading  ssc  stat-power  stats  stock-flow  stream  structure  study  stylized-facts  summarise  summarization  summary  survey  talks  technology  techtariat  testing  text  the-trenches  the-watchers  the-world-is-just-atoms  thinking  time-series  tip-of-tongue  todo  tools  trees  trends  tutorial  tutorials  twin-study  twitter  ui  unaffiliated  unintended-consequences  unit  universalism-particularism  usa  vague  variance-components  visualization  volo-avolo  waves  west-hunter  whiggish-hegelian  whole-partial-many  windows  with-redefs  wonkish  workshop  yvain  🌞  🎩  🔬  🖥  🤖 

Copy this bookmark:



description:


tags: