speech-recognition   302

« earlier    

SeanNaren/deepspeech.pytorch: Speech Recognition using DeepSpeech2.
GitHub is where people build software. More than 27 million people use GitHub to discover, fork, and contribute to over 80 million projects.
speech-recognition  pytorch  speech  audio  deep-learning 
yesterday by nharbour
speech-recognition/app.js at master · syzer/speech-recognition
GitHub is where people build software. More than 27 million people use GitHub to discover, fork, and contribute to over 80 million projects.
bullshit  bingo  machine-learning  deep-learning  node.js  webkit  speech  speech-recognition 
23 days ago by nharbour
'DolphinAttack: Inaudible Voice Commands' [pdf]
'Speech recognition (SR) systems such as Siri or Google Now have become an increasingly popular human-computer interaction method, and have turned various systems into voice controllable systems(VCS). Prior work on attacking VCS shows that the hidden voice commands that are incomprehensible to people can control the systems. Hidden voice commands, though hidden, are nonetheless audible. In this work, we design a completely inaudible attack, DolphinAttack, that modulates voice commands on ultrasonic carriers (e.g., f > 20 kHz) to achieve inaudibility. By leveraging the nonlinearity of the microphone circuits, the modulated low frequency audio commands can be successfully demodulated, recovered, and more importantly interpreted by the speech recognition systems. We validate DolphinAttack on popular speech recognition systems, including Siri, Google Now, Samsung S Voice, Huawei HiVoice, Cortana and Alexa. By injecting a sequence of inaudible voice commands, we show a few proof-of-concept attacks, which include activating Siri to initiate a FaceTime call on iPhone, activating Google Now to switch the phone to the airplane mode, and even manipulating the navigation system in an Audi automobile. We propose hardware and software defense solutions. We validate that it is feasible to detect DolphinAttack by classifying the audios using supported vector machine (SVM), and suggest to re-design voice controllable systems to be resilient to inaudible voice command attacks.'

via Zeynep (https://twitter.com/zeynep/status/956520320504123392)
alexa  siri  attacks  security  exploits  google-now  speech-recognition  speech  audio  acm  papers  cortana 
january 2018 by jm

« earlier    

related tags

acm  acoustic  adaptation  adapting  add-to-list  ai  alexa  algorithm  amazon  api  apis  apple-behind-the-scenes  apple  arduino  artificial-intelligence  asr  attacks  audio  australia  baidu  bbc:twm  best  bingo  bot  bullshit  cmu  command  computer-vision  content-samurai  conversational-ui  conversational  cortana  culture  customize  dataset  datasets  deep-learning  deeplearning  develop  dictionary  discussion  domotics  dragon-dictate  emberjs  exploits  facebook  feature-extraction  features  fft  from:gavin  gcp  google-now  google  grapheme-to-phoneme  gui  hacker-news-comments  health  human  ibm  image-recognition  inner-mongolia  insane  internet-of-things  ios  iot  irish-diaspora  jan18  javascript-bits  javascript  js  language-assessment  learning  library  linguistics  lvsr  mac  machine-learning  machine_learning  machinelearning  macos  mar17  markov-chain  microphone  microsoft  ml  model  models  mongolian  mozilla  natural-language-processing  neural-network  neural-networks  neural  nlp  nlu  nn  node.js  nov16  open-source  opensource  papers  pmz  podcasts  programming  pronunciation  python  pytorch  raspberry-pi  recognition  reference  research  rnn  rsi  sdk  security  separation  siri  software  spectrogram  speech-analysis  speech-generation  speech-to-text  speech  speechrecognition  sphinx  sphinxkeys  stammer  stutter  svr  switchboard  teaching  technology  tensor-flow  tensorflow  text-to-speech  text  tool  tools  training  transcribe  transcription  tutorial  user-interface  video  vision  voice-control  voice-interfaces  voice-recognition  voice  voxable  watson  wavenet  wearable  web-speech-api  webkit  wikipedia  wtf 

Copy this bookmark: