sentimentAnalysis   608

« earlier    

Browsing Histories – SHARE LAB
This story was based on just a tiny excerpt, a two-hour sample, from the internet browsing history of a Swiss journalist J. B. In late June 2015 he visited the Tactical Tech office in Berlin as he was assigned to lay open his private life and see what can be told from the data he creates on his devices.
A year later, we gathered in Berlin for a week of data investigations and one of the data sets that we explored was the browsing history collection of Mr. J. Our goal was to find out how much we could learn from someone’s browsing history or, to rephrase it, what others can learn by exploiting data from our own browsing history.
dj  Privacy  browser  browsinghistory  Networkanalysis  cookies  sentimentanalysis  ai  nlg  surveillance 
19 hours ago by paulbradshaw
vmarkovtsev/BiDiSentiment: Two-way deep RNN for sentiment classification.
GitHub is where people build software. More than 27 million people use GitHub to discover, fork, and contribute to over 80 million projects.
python  rnn  sentimentanalysis 
10 weeks ago by geetarista
Search | Stephen F. Austin - Digital Collection
Search by keyword, author, recipient, date range, locations, and sentiment scores (rankings of the positivity or negativity of the letters). View your results as a document list, a timeline plotted by sentiment scores, a map of the letters’ geography, and ranked word counts.
infovis  Dataviz  sentimentanalysis  textmining  text 
february 2018 by miaridge
About | Stephen F. Austin - Digital Collection
After experimenting with six different open-source ruby sentiment analysis libraries from GitHub, DAP settled on the open-source TextMood. Each document in the collection was run against the program’s dictionary and given a sentiment score based on the cumulative positive and negative weight of the words within that document.

We used three approaches to check the quality of the results after applying sentiment analysis to the DAP corpus.
sentimentanalysis  textmining  tdm  DigitalHumanities  DigitalHistory 
february 2018 by miaridge
How social media reflects our daily mood changes
How social media reflects our daily mood changes Sad in the morning, angry by evening. Sigh.
moodtech  socialmedia  emotion  emotionanalytics  sentimentanalysis 
january 2018 by Ssivek

« earlier    

related tags

2016  adweek  ai  akka  algorithmicbias  algorithmics  analysis  api  apis  artificialintelligence  aws  azure  badstats  bias  bigdata  books  brexit  browser  browsinghistory  business  campaigning  chatbot  classification  cloud  code  cookies  corpora  counterclaim  courses  creativeshowcase  cx  data-analysis  data  dataanalysis  datacreation  dataenrichment  datamining  datascience  dataviz  dc:creator=davieswill  dctagged  deeplearning  defence  development  di  digitalhistory  digitalhumanities  discourse  dj  dove  education  email  emotion  emotionanalytics  emotions  enrichment  enron  entityextraction  evilness  experiment  expression  facialrecognition  fakenews  fb  fmcg  google  happiness  homophobia  howto  ideas  images  infovis  ipython  janeausten  kafka  kanyewest  keras  language  lda  learning  letter  lies  location  lstm  machine-learning  machine  machinecomprehension  machinelearning  microsite  microsoft  misinformation  misogyny  ml  moodtech  music  n;p  narrative  ner  networkanalysis  neuralnetwork  news  nlg  nlp  nltk  nodejs  onlineadvertising  opinionmining  package  pdf  personalisation  playframework  politics  populism  privacy  programming  propaganda  psychology  python  r-language  r-project  r  racism  reddit  research  rnn  rstats  ruby  s  scary  security  semantic  sentiment-analysis  sentiment  sentimental  sentimentanalysis  slides  smm  social  socialmedia  society  spark  startups  statistics  surveillance  tdm  teaching  technology  tensorflow  text-analysis  text-mining  text  text_classification  textanalysis  textblob  textmining  tools  translation  trends  trump  trumpdonald  truth  tutorial  tweetit  twitter  vader  video  vis  visualisation  visualization  washpo  webscraping  word2vec  wordembedding  wordembeddings  worstpractice 

Copy this bookmark: