sentimentAnalysis   596

« earlier    

[1704.01444] Learning to Generate Reviews and Discovering Sentiment
We explore the properties of byte-level recurrent language models. When given sufficient amounts of capacity, training data, and compute time, the representations learned by these models include disentangled features corresponding to high-level concepts. Specifically, we find a single unit which performs sentiment analysis. These representations, learned in an unsupervised manner, achieve state of the art on the binary subset of the Stanford Sentiment Treebank. They are also very data efficient. When using only a handful of labeled examples, our approach matches the performance of strong baselines trained on full datasets. We also demonstrate the sentiment unit has a direct influence on the generative process of the model. Simply fixing its value to be positive or negative generates samples with the corresponding positive or negative sentiment.
3 days ago by hustwj
Joint sentiment/topic model for sentiment analysis
Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework based on Latent Dirichlet Allocation (LDA), called joint sentiment/topic model (JST), which detects sentiment and topic simultaneously from text. Unlike other machine learning approaches to sentiment classification which often require labeled corpora for classifier training, the proposed JST model is fully unsupervised. The model has been evaluated on the movie review dataset to classify the review sentiment polarity and minimum prior information have also been explored to further improve the sentiment classification accuracy. Preliminary experiments have shown promising results achieved by JST.
LDA  sentimentanalysis 
7 weeks ago by hustwj
Cambridge Analytica: the Geotargeting and Emotional Data Mining Scripts
“Cambridge Analytica: the Geotargeting and Emotional Data Mining Scripts” by How the public were manipulated
sentimentAnalysis  algorithmics  evilness  enrichment  dataEnrichment  from twitter_favs
8 weeks ago by psychemedia
Periscopic: Do good with data
Our resulting visualizations explore the emotional character of our new President using footage of his campaign speeches. Here, we’ll walk through our process of research, discovery, and refinement over the course of the project.
Brief Intro to the Emotion API
The tool at the core of our analysis was the Microsoft Emotion API. Given a video input, the API finds each face within the frame at an interval of roughly half a second and calculates confidence across a set of eight universally-recognized and communicated emotions: anger, contempt, disgust, fear, happiness, neutral, sadness, and surprise. The data produced can be used to monitor the predominant emotions of a single subject or even an entire crowd.
dj  vis  sentimentanalysis  trump  apis  api 
8 weeks ago by paulbradshaw
Get into Sentiment Analysis with Ruby - Red Panthers
Sometimes we fail to understand other’s emotion. So how it will be when machines try to understand ours? When writing programs we care about the syntax and structures but these concerns are not there in communication between people. To process our language machines have to understand not only what we say, but what we mean. Natural language processing is a fascinating subject to explore. But what makes it complicated?
ruby  nlp  sentimentanalysis 
11 weeks ago by moonhouse

« earlier    

related tags

2016  adweek  ai  akka  algorithmicbias  algorithmics  analysis  api  apis  aws  badstats  bagofwords  beautiful  bias  bigdata  books  brexit  campaigning  chatbot  classification  cloud  code  corpora  counterclaim  creativeshowcase  cx  data-analysis  data  dataanalysis  datacreation  dataenrichment  datamining  datascience  dataset  datasets  dataviz  dc:creator=davieswill  dctagged  deeplearning  development  di  digitalhumanities  discourse  dj  dove  emotion  emotions  enrichment  entityextraction  evilness  experiment  expression  facialrecognition  fakenews  fb  fivethirtyeight  fmcg  google  happiness  happy  homophobia  howto  images  ipython  janeausten  kafka  kanyewest  keras  language  languages  lda  learning  lies  location  lstm  machine-learning  machine  machinecomprehension  machinelearning  microsite  microsoft  misinformation  misogyny  ml  model  moodtech  music  n;p  narrative  news  nlp  nltk  onlineadvertising  opensource  opinionmining  package  pdf  personalisation  playframework  politics  populism  programming  psychology  python  r-project  r  racism  reddit  reference  research  rstats  ruby  s  semantic  sentiment-analysis  sentiment  sentimentanalysis  slides  smm  social  socialmedia  society  spark  startups  statistics  text-analysis  text-mining  text  text_classification  textanalysis  textblob  textmining  tools  trump  trumpdonald  truth  tutorial  tweetit  twitter  video  vis  visualisation  visualization  washpo  webscraping  word2vec  wordembedding  wordembeddings  worstpractice 

Copy this bookmark: