pca   1097

« earlier    

Principal Component Analysis explained visually
Principal component analysis (PCA) is a technique used to emphasize variation and bring out strong patterns in a dataset. It's often used to make data easy to explore and visualize.
pca  visualization  statistics 
26 days ago by rexarski
Explained Visually
Explained Visually (EV) is an experiment in making hard ideas intuitive inspired the work of Bret Victor's Explorable Explanations.
ols  pca  statistics  visualization 
26 days ago by rexarski
The PCA's "Tim Keller Problem"
Jake Meador/Mere Orthodoxy, Sept. 13, 2017.
5 weeks ago by markcoddington

« earlier    

related tags

3d  algorithms  analysis  autoencoder  basics  bigdata  bioinformatics  cca  chriscoldwell  cluster  clustering  code-examples  code  color  component  components  compression  data-science  datamining  datasci  datascience  decomposition  deep-learning  deeplearning  demos  dimensionality-reduction  dimensionnality  ecology  eigen  eigenvectors  engineering  factorization  feature  feminism  graphics  graphs  image  infovis  johnson-lindenstrauss  learning  liberals  linear_algebra  linearalgebra  machine  machine_learning  machinelearning  math  matrix  microbial  mixeddenominations  ml  neuralnets  ols  opc  optimization  ordination  pcb  pdf  plot  population_genetics  principal  pwb  python  questions  r  random-projections  reduction  rpca  rstats  singular  slipperyslope  sorting  statistics  stats  svd  t-sne  timeseries  timkeller  tmp  toddpruitt  transgender  truncated-svd  tsne  tutorial  ul  value  vectors  videos  visualization  whitening  women  womensordination 

Copy this bookmark: