pandas   6183

« earlier    

Dask: Scalable analytics in Python
Dask natively scales Python: Dask provides advanced parallelism for analytics, enabling performance at scale for the tools you love

Numpy: Dask arrays scale Numpy workflows, enabling multi-dimensional data analysis in earth science, satellite imagery, genomics, biomedical applications, and machine learning algorithms.

Pandas: Dask dataframes scale Pandas workflows, enabling applications in time series, business intelligence, and general data munging on big data.

Scikit-Learn: Dask-ML scales machine learning APIs like Scikit-Learn and XGBoost to enable scalable training and prediction on large models and large datasets.
analytics  python  library  bigdata  database  datascience  numpy  pandas  scikit 
5 days ago by RBarnard
Why you should move from to and from to ? Because of this!!! done…
hvplot  pandas  from twitter_favs
6 days ago by rukku
Python Pandas: Tricks & Features You May Not Know – Real Python
Lesser-known but idiomatic Pandas features for those already comfortable with Pandas' basic functionality and concepts.
python  pandas 
7 days ago by cychong47

« earlier    

related tags

analyse  analysis  analytics  apache  arrays  arrow  automation  awesome  benchmark  bestpractices  big-data  bigdata  bigquery  books  chaining  codegym  cookbook  corpora  csv  data-analysis  data-frame  data-science  data  database  databases  datamining  datascience  datavisualization  discussion  esp8266  excel  extension  flatten  from_pocket  geolocation  gis  github-issues  github  gprep  grouper  howto  hvplot  json  jupyter  jupyternotebook  library  machine-learning  machinelearning  mapping  matplotlib  method  micropython  nlp  numpy  panda  pd  pivot  plot  profiling  programgeneration  programming  pydata  python  rstats  science  scikit-learn  scikit  signal-processing  siparcs  spacy  sql  sqlite  stackoverflow  statistics  table  til  time-series  tips  tm351  tutorial  visualization  xml 

Copy this bookmark: