numpy   3591

« earlier    

Python Numpy Tutorial
We will use the Python programming language for all assignments in this course. Python is a great general-purpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing.

Some of you may have previous knowledge in Matlab, in which case we also recommend the numpy for Matlab users page.

You can also find an IPython notebook version of this tutorial here created by Volodymyr Kuleshov and Isaac Caswell for CS 228.
numpy  courses 
11 days ago by istemi
CuPy
HIGH PERFORMANCE WITH CUDA

CuPy is an open-source matrix library accelerated with NVIDIA CUDA. It also uses CUDA-related libraries including cuBLAS, cuDNN, cuRand, cuSolver and NCCL to make full use of the GPU architecture.
numpy  python 
14 days ago by danimad
rougier/numpy-100: 100 numpy exercises (100% complete)
numpy-100 - 100 numpy exercises (100% complete)
python  numpy 
15 days ago by kwbr
More auto-differentiation goodness for science and engineering
In this post I continue my investigations in the use of auto-differentiation via autograd in scientific and mathematical programming. The main focus of today is using autograd to get derivatives that either have mathematical value, eg. accelerating root finding, or demonstrating mathematical rules, or scientific value, e.g. the derivative is related to a property, or illustrates some constraint.

All the code in this post relies on these imports:

import autograd.numpy as np
from autograd import grad, jacobian
In the following sections I explore some applications in calculus, root-finding, materials and thermodynamics.
numpy  science  differentiation  python 
21 days ago by deprecated
Data Science Free | Cheat Sheets
Cheat Sheets - Added April 24, 2017 at 04:52PM
data-science  numpy  pandas  python  r-lang 
24 days ago by xenocid
Twitter
Do you use open source software like , , , and many others sponsored by ? Help…
Pandas  PyMC3  Jupyter  NumPy  from twitter_favs
24 days ago by rukku
alimanfoo/zarr: An implementation of chunked, compressed, N-dimensional arrays for Python.
Zarr is a Python package providing an implementation of compressed, chunked, N-dimensional arrays, designed for use in parallel computing.
numpy  python  numerical  performance  library 
5 weeks ago by jonmoore
1-day numpy training Numpy exercises
training page from facebook research engineer Matthijs Douze
numpy  python  tutorial 
5 weeks ago by danwin

« earlier    

related tags

2see  activation  advocacy  ai  algebra  anaconda  apl  array  arrays  artificial-intelligence  bayes  book  books  buffer  calc  calculus  cffi  cg  chainer  cheatsheat  cheatsheet  cnn  code  computergraphics  convolution  convolutional  course  courses  cuda  cupy  cython  dask  data-science  data-viz  data  dataanalysis  database  datascience  deep-learning  derivatives  development  differentiation  distributed  education  ema  function  github  glsl  golang  gpgpu  gpu  graphics  idioms?  im2col  implementation  information  installation  installer  ipynb  ipython  javascript  julia  jupyter  keras  lambda  learn  learning  libraries  library  linalg  linear-algebra  linear.algebra  linear  linearalgebra  lstm  machine-learning  machine  machine_learning  machinelearning  macinlearning  manual  math  mathematics  matplotlib  matrix  ml  neural-networks  neuralnet  nn  node.js  np  numba  numerical  numericalcomputing  odbc  opengl  pandas  parallel  performance  programming  py  pymc3  pypy  python  pytorch  r-lang  random  read2of  reddit  reference  ringbuffer  rnn  rstat  ruby  science  scientificcomputing  scikitlearn  scipy  seaborn  serverless  setup  solution  sortof  spark  speed  stan  statistics  tensorflow  tutorial  tutorials  vectors  visualization 

Copy this bookmark:



description:


tags: