music-transcription   10

[1710.11153] Onsets and Frames: Dual-Objective Piano Transcription
We advance the state of the art in polyphonic piano music transcription by using a deep convolutional and recurrent neural network which is trained to jointly predict onsets and frames. Our model predicts pitch onset events and then uses those predictions to condition framewise pitch predictions. During inference, we restrict the predictions from the framewise detector by not allowing a new note to start unless the onset detector also agrees that an onset for that pitch is present in the frame. We focus on improving onsets and offsets together instead of either in isolation as we believe this correlates better with human musical perception. Our approach results in over a 100% relative improvement in note F1 score (with offsets) on the MAPS dataset. Furthermore, we extend the model to predict relative velocities of normalized audio which results in more natural-sounding transcriptions.
music  music-transcription  deep-learning 
july 2018 by arsyed
[1206.6392] Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription
We investigate the problem of modeling symbolic sequences of polyphonic music in a completely general piano-roll representation. We introduce a probabilistic model based on distribution estimators conditioned on a recurrent neural network that is able to discover temporal dependencies in high-dimensional sequences. Our approach outperforms many traditional models of polyphonic music on a variety of realistic datasets. We show how our musical language model can serve as a symbolic prior to improve the accuracy of polyphonic transcription.
deep-learning  sequential-modeling  music  music-transcription 
july 2018 by arsyed
[1612.05153] On the Potential of Simple Framewise Approaches to Piano Transcription
In an attempt at exploring the limitations of simple approaches to the task of piano transcription (as usually defined in MIR), we conduct an in-depth analysis of neural network-based framewise transcription. We systematically compare different popular input representations for transcription systems to determine the ones most suitable for use with neural networks. Exploiting recent advances in training techniques and new regularizers, and taking into account hyper-parameter tuning, we show that it is possible, by simple bottom-up frame-wise processing, to obtain a piano transcriber that outperforms the current published state of the art on the publicly available MAPS dataset -- without any complex post-processing steps. Thus, we propose this simple approach as a new baseline for this dataset, for future transcription research to build on and improve.
music  music-transcription  deep-learning 
july 2018 by arsyed
[1702.00025] An Experimental Analysis of the Entanglement Problem in Neural-Network-based Music Transcription Systems
"Several recent polyphonic music transcription systems have utilized deep neural networks to achieve state of the art results on various benchmark datasets, pushing the envelope on framewise and note-level performance measures. Unfortunately we can observe a sort of glass ceiling effect. To investigate this effect, we provide a detailed analysis of the particular kinds of errors that state of the art deep neural transcription systems make, when trained and tested on a piano transcription task. We are ultimately forced to draw a rather disheartening conclusion: the networks seem to learn combinations of notes, and have a hard time generalizing to unseen combinations of notes. Furthermore, we speculate on various means to alleviate this situation."
music  music-transcription  deep-learning  entanglement  generalization 
july 2018 by arsyed
[1508.01774] An End-to-End Neural Network for Polyphonic Piano Music Transcription
We present a supervised neural network model for polyphonic piano music transcription. The architecture of the proposed model is analogous to speech recognition systems and comprises an acoustic model and a music language model. The acoustic model is a neural network used for estimating the probabilities of pitches in a frame of audio. The language model is a recurrent neural network that models the correlations between pitch combinations over time. The proposed model is general and can be used to transcribe polyphonic music without imposing any constraints on the polyphony. The acoustic and language model predictions are combined using a probabilistic graphical model. Inference over the output variables is performed using the beam search algorithm. We perform two sets of experiments. We investigate various neural network architectures for the acoustic models and also investigate the effect of combining acoustic and music language model predictions using the proposed architecture. We compare performance of the neural network based acoustic models with two popular unsupervised acoustic models. Results show that convolutional neural network acoustic models yields the best performance across all evaluation metrics. We also observe improved performance with the application of the music language models. Finally, we present an efficient variant of beam search that improves performance and reduces run-times by an order of magnitude, making the model suitable for real-time applications.
music  music-transcription  deep-learning  e2e 
july 2018 by arsyed

related tags

audio  capo  deep-learning  e2e  entanglement  generalization  guitar  music  sequential-modeling  slides 

Copy this bookmark:



description:


tags: