metadata   33227

« earlier    

Schema Markup Guide for Dummies:2018| An MRS Guide
This is a pretty good specimen of JSONLD-without-RDF.
jsonld  metadata  web  searchengine  howto  rdf 
9 hours ago by rybesh
MAT: Metadata Anonymisation Toolkit
MAT is a toolbox composed of a GUI application, a CLI application and a library, to anonymize/remove metadata.
anonymity  metadata  privacy  python  tool  opensource 
yesterday by raphman
RT : Experts and : Please review DDI 3.3. It is your metadata standard! Deadline is extended…
Metadata  from twitter
6 days ago by aarontay
US Students Turn Grief Into Tech Startup After France Attack - The New York Times
Banerjee and several classmates have since turned their grief into a startup called Archer that builds digital tools to help journalists, investigators and human rights workers tackle terrorism, sanctions evasion, corruption and other global violence.
ee  osint  berkeley  human_rights  metadata 
7 days ago by osi_info_program
Open Semantic Search
Apache Solr (open source enterprise-search) based free software & open source research tools for faceted search, exploratory search, tagging & annotation, text mining, OCR & datavisualization
Apache Solr (open source enterprise-search) based free software & open source research tools for faceted search, exploratory search, tagging & annotation, text mining, OCR & datavisualization
apache  seo  semantic  metadata  meta  rdf  search  data 
9 days ago by michaelfox
Identifying People by Metadata - Schneier on Security
Interesting research: "You are your Metadata: Identification and Obfuscation of Social Media Users using Metadata Information," by Beatrice Perez, Mirco Musolesi, and Gianluca Stringhini.
Abstract: Metadata are associated to most of the information we produce in our daily interactions and communication in the digital world. Yet, surprisingly, metadata are often still categorized as non-sensitive. Indeed, in the past, researchers and practitioners have mainly focused on the problem of the identification of a user from the content of a message.
privacy  metadata  ID  security 
10 days ago by rgl7194
DACS (Describing Archives: A Content Standard) Statement of Principles
What is archival description and what should it do?
User-centered archival description
Identifying aggregations of records
Original order and arrangement as archival context
archives  GLAM  collections  metadata 
13 days ago by miaridge
Necsus | How machines see the world: Understanding image annotation
big companies like Amazon (Amazon Mechanical Turk) can hire a large number of digital workers, who manually annotate images presented to them. Working from home at their computers, these digital annotators describe, pigeonhole, mark, segment, and frame images. For example, when a strawberry is shown on the screen, they will label it ‘strawberry’ (object classification). All tagged images are then organised into semantic areas based on their labelling, and later collected in databases used to train machines and algorithms. But what does ‘annotation’ mean? To annotate means to define areas in an image and assign them a value. The information, or metadata, can be for instance a series of keywords that attribute a semantic value to the chosen portion of the image. To create a machine vision system able to automatically find a cat and define its location in a picture, for example, a large collection of manually annotated images is required. The tasks digital workers are assigned reflect ones that will subsequently be performed by machines and algorithms. These tasks include:

Object classification (Fig. 1): determining whether an object is present or absent in the image (Is there a cat in the image? Are human beings present in the image?).

Object detection (Fig. 2): identifying a particular object and its arrangement in space (Where is the dog located?). In this case, the worker is asked to draw a bounding box around a single object.

Scene classification (Fig. 3): classifying a given environment. Questions such as Is the building a museum or a hospital? are presented to the annotator, who has to assign the corresponding label.

Image segmentation or pixel-level image segmentation (Fig. 4): determining which object a pixel in the image belongs to. The worker is asked to outline single objects’ profiles and annotate every area separately.

Attribute recognition (Fig. 5): defining the visual properties or qualities of objects – how an object looks and not just where is it located. The worker is asked to choose adjectives that describe the object (Is the scene ‘cold’ or ‘hot’?)....

is it possible to reduce an image, a visual experience, to a mere group of words? Is it possible to translate visual information into language?...

In some cases, the images presented to the annotator do not match her knowledge, and therefore create an obstacle and force the worker to find a solution. The use of synonyms can also be problematic....

some crowdsourcing platforms establish a list of terms for which models will be trained, called attribute vocabulary...

Two additional cases are particularly problematic for annotators: describing an object that is partially hidden by other elements in the image, and objects reflected by surfaces such as mirrors or present in transparent containers
machine_vision  classification  metadata  annotation 
13 days ago by shannon_mattern
RT : I read: AI and Museum Collections.
Faced with a Museum colle…
MachineLearning  MuseTech  metadata  from twitter
14 days ago by miaridge

« earlier    

related tags

<meta>  2018  212  351  413  _todo  acceleration  access  administration  algorithm  amc  analysis  analytics  annotation  anonymity  anonymization  apache  api  apps  archives  arena  art  articles  audio  audiobook  authority_control  aws  berkeley  bibframe  books  building  camera  cataloging  cermine  channel  classification  cloudwatch  collections  container  containers  content  content_strategy  contentstrategy  credentials  cross  d8  danbri  data-catalog  data  database  datastructures  debug  description  dev  development-tools  development  drupal  dynamic-programming  dynamic  ee  emu  emulator  encoding  encyclopedia  ethic  exif  facebook  fail  fantasy  favicon  ffmpeg  filesystem  fluent  fluentd  formats  forum  france  gazetteer  geo  glam  google  graph  graphql  hadoop  handbrake  harvard  hazards  hdfs  hometheater  hostnames  howto  html  human_rights  humor  iam  icon  id  images  informationobscurity  infrastructure  instagram  interesting  internetarchive  intranet  ios  iot  ir  itunes  itunes_hints  javascript  jobs  js  jsonld  kim  ko  landsat  language  libraries  library  linked-data  links  linq  lint  linux  loc  logging  logs  machine-ux  machine_learning  machine_vision  machinelearning  management  marc  mdadm  media  meta  metadata-extraction  metaprogramming  metatags  mets  microdata  microformats  mobile  modular  moviepass  movies  mp4  musetech  music  namenode  netflix  news  newspapers  niso  nlp  nz  office365  og  online  open  open_access  openaccess  opengraph  opensource  optimization  oreilly  osint  p2p  pages  pattern  pdf  people  performance  photos  php  platform  plex  plugin  plugins  podemo  polyhierarchy  powerful  premis  privacy  product-development  productivity  profiling  programming  protocol  protocols  python  python3  query  rael  raid  rdf  reference  reflectance  refresh  registry  reidentification  remote  researchers  retry  reuse  risks  robustness  roms  samvera  scai  schema  scholarworks  scpb  scraper  sdk  search  search_engine  searchengine  security  semantic  seo  service  sharepoint  sharing  smart  social-networking  social  socialmedia  standards  stories  structure  subscription  surveillance  syllabus  syntax  tagging  tcd  teaching  television  testing  text  timeout  toa  toblog  todigest  tool  toolkit  tools  tracking  transcoding  triangulation  tropy  twitter  types  unam  university-of-alberta  users  usgs  util  utilities  validation  via-diigo  via-ifttt  video  visualization  web-archive  web  web2.0  webdesign  websocket  websockets  windows  xml 

Copy this bookmark: