matrix   6172

« earlier    

Sherman–Morrison formula - Wikipedia
computes the inverse of the sum of an invertible matrix A {\displaystyle A} A and the outer product, u v T {\displaystyle uv^{T}} uv^{T}, of vectors u {\displaystyle u} u and v {\displaystyle v} v.
matrix  maths 
6 days ago by dill
The matrix calculus you need for deep learning
Excellent (re-)primer on Calculus as it applies to "deep learning", a.k.a. neural networks.
neuroscience  neural_network  Markov  machine_learning  deep_learning  AI  artificial  intelligence  math  calculus  matrix  vector  scalar  partial_derivative  slope  gradient 
17 days ago by Tonti
Efficient matrix multiplication
GitHub is where people build software. More than 28 million people use GitHub to discover, fork, and contribute to over 85 million projects.
performance  matrix  programming  math  linear-algebra 
19 days ago by rryan
The Matrix Calculus You Need for Deep Learning | Hacker News
luk32 5 hours ago [-]

If someone likes more lecture style explanation I can recommend 3blue1brown's material on YouTube. He explained in a pretty good an accessible way imho.
I didn't learn artificial neural network stuff from there. I knew those concepts but I didn't know the matrix formalism applied to it. So this was really nice to understand why GPUs are good for this. Math-wise it was really nice watch.

tw1010 4 hours ago [-]
ml  math  ai  matrix 
22 days ago by aquaman73
The matrix calculus you need for deep learning
This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way---just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here.
machinelearning  deeplearning  matrix  calculus  ai  math 
23 days ago by euler

« earlier    

related tags

**  adafruit  agile  ai  airline  algebra  alias  animation  apl  arduino  artificial  asm  assembly  audio  back  blogs  book  bot  bridge  c++  calculus  chat  client  clifford  cloud-native  coink  collaboration  communication  complexity  computer-science  container-solutions  cpp  craft  css  decentralize  decentralized  deep-learning  deep_learning  deeplearning  diagram  dimension  discord  distance-matrix  dl  docker  dwd  e2e  eigenvalue  eigenvalues  eisenhower  email  embedded  encryption  enhanced  factorization  fastai  flight  flights  foctorisation  france  games  geometry  github  gitlab  glow  gradient  graph  graphics  grassman  haiku  hardware  hpc  hyperbot  ifttt  im  inspiration  instant  instruction  intel  intelligence  interaction  inverse  io18  irc  java10  jeremyhoward  jvm  keypad  language  learning  led  library  linear-algebra  linear  linearalgebra  logic  mac  machine-learning  machine  machine_learning  machinelearning  macos  markov  math  mathematics  maths  matrixmath  maturity  max  message  messaging  ml  negative  net  network  neural  neural_network  neuroscience  neutral  nmf  non  normal  numericalmethods  numpy  opcode  opensource  optimization  oss  osx  paper  partial_derivative  perf  performance  photo  physics  pi  pocket  pollbot  prioritization  product  programming  proposal  protocol  python  pytorch  random  raspberrypi  raspi  raywenderlich  reference  regression  resources  review  riot  roadmap  rust  scalar  scroller  search  self-hosting  simd  slack  slope  software  sonos  sorting  statistics  support  teaching  telegram  telephone  terminal  theme  topic  toread  transformation  travel  trend  tut  tutorial  twitter  uncertainty  value  vector  video  visualization  webapps  webassembly  webcam  webhook  webhooks  welcome  workshop 

Copy this bookmark: