**math.ca**100

[chao-dyn/9907004] Quasi periodic motions from Hipparchus to Kolmogorov

5 days ago by nhaliday

The evolution of the conception of motion as composed by circular uniform motions is analyzed, stressing its continuity from antiquity to our days.

nibble
preprint
papers
math
physics
mechanics
space
history
iron-age
mediterranean
the-classics
science
the-trenches
fourier
math.CA
cycles
oscillation
interdisciplinary
early-modern
the-great-west-whale
composition-decomposition
series
time
sequential
article
exposition
explanation
math.DS
innovation
novelty
giants
waves
5 days ago by nhaliday

Physics 152: Gravity, Fluids, Waves, Heat

10 weeks ago by nhaliday

lots of good lecture notes with pictures, worked examples, and simulations

unit
org:edu
org:junk
course
physics
mechanics
gravity
tidbits
symmetry
calculation
examples
lecture-notes
simulation
dynamic
dynamical
visualization
visual-understanding
ground-up
fluid
waves
oscillation
thermo
stat-mech
p:whenever
accretion
math.CA
hi-order-bits
nitty-gritty
linearity
spatial
space
entropy-like
temperature
proofs
yoga
plots
10 weeks ago by nhaliday

Isaac Newton: the first physicist.

11 weeks ago by nhaliday

[...] More fundamentally, Newton's mathematical approach has become so basic to all of physics that he is generally regarded as _the father of the clockwork universe_: the first, and perhaps the greatest, physicist.

The Alchemist

In fact, Newton was deeply opposed to the mechanistic conception of the world. A secretive alchemist [...]. His written work on the subject ran to more than a million words, far more than he ever produced on calculus or mechanics [21]. Obsessively religious, he spent years correlating biblical prophecy with historical events [319ff]. He became deeply convinced that Christian doctrine had been deliberately corrupted by _the false notion of the trinity_, and developed a vicious contempt for conventional (trinitarian) Christianity and for Roman Catholicism in particular [324]. [...] He believed that God mediated the gravitational force [511](353), and opposed any attempt to give a mechanistic explanation of chemistry or gravity, since that would diminish the role of God [646]. He consequently conceived such _a hatred of Descartes_, on whose foundations so many of his achievements were built, that at times _he refused even to write his name_ [399,401].

The Man

Newton was rigorously puritanical: when one of his few friends told him "a loose story about a nun", he ended their friendship (267). [...] He thought of himself as the sole inventor of the calculus, and hence the greatest mathematician since the ancients, and left behind a huge corpus of unpublished work, mostly alchemy and biblical exegesis, that he believed future generations would appreciate more than his own (199,511).

[...] Even though these unattractive qualities caused him to waste huge amounts of time and energy in ruthless vendettas against colleagues who in many cases had helped him (see below), they also drove him to the extraordinary achievements for which he is still remembered. And for all his arrogance, Newton's own summary of his life (574) was beautifully humble:

"I do not know how I may appear to the world, but to myself I seem to have been only like a boy, playing on the sea-shore, and diverting myself, in now and then finding a smoother pebble or prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me."

Before Newton

...

1. Calculus. Descartes, in 1637, pioneered the use of coordinates to turn geometric problems into algebraic ones, a method that Newton was never to accept [399]. Descartes, Fermat, and others investigated methods of calculating the tangents to arbitrary curves [28-30]. Kepler, Cavalieri, and others used infinitesimal slices to calculate volumes and areas enclosed by curves [30], but no unified treatment of these problems had yet been found.

2. Mechanics & Planetary motion. The elliptical orbits of the planets having been established by Kepler, Descartes proposed the idea of a purely mechanical heliocentric universe, following deterministic laws, and with no need of any divine agency [15], another anathema to Newton. _No one imagined, however, that a single law might explain both falling bodies and planetary motion_. Galileo invented the concept of inertia, anticipating Newton's first and second laws of motion (293), and Huygens used it to analyze collisions and circular motion [11]. Again, these pieces of progress had not been synthesized into a general method for analyzing forces and motion.

3. Light. Descartes claimed that light was a pressure wave, Gassendi that it was a stream of particles (corpuscles) [13]. As might be guessed, Newton vigorously supported the corpuscular theory. _White light was universally believed to be the pure form_, and colors were some added property bequeathed to it upon reflection from matter (150). Descartes had discovered the sine law of refraction (94), but it was not known that some colors were refracted more than others. The pattern was the familiar one: many pieces of the puzzle were in place, but the overall picture was still unclear.

The Natural Philosopher

Between 1671 and 1690, Newton was to supply definitive treatments of most of these problems. By assiduous experimentation with prisms he established that colored light was actually fundamental, and that it could be recombined to create white light. He did not publish the result for 6 years, by which time it seemed so obvious to him that he found great difficulty in responding patiently to the many misunderstandings and objections with which it met [239ff].

He invented differential and integral calculus in 1665-6, but failed to publish it. Leibniz invented it independently 10 years later, and published it first [718]. This resulted in a priority dispute which degenerated into a feud characterized by extraordinary dishonesty and venom on both sides (542).

In discovering gravitation, Newton was also _barely ahead of the rest of the pack_. Hooke was the first to realize that orbital motion was produced by a centripetal force (268), and in 1679 _he suggested an inverse square law to Newton_ [387]. Halley and Wren came to the same conclusion, and turned to Newton for a proof, which he duly supplied [402]. Newton did not stop there, however. From 1684 to 1687 he worked continuously on a grand synthesis of the whole of mechanics, the "Philosophiae Naturalis Principia Mathematica," in which he developed his three laws of motion and showed in detail that the universal force of gravitation could explain the fall of an apple as well as the precise motions of planets and comets.

The "Principia" crystallized the new conceptions of force and inertia that had gradually been emerging, and marks the beginning of theoretical physics as the mathematical field that we know today. It is not an easy read: Newton had developed the idea that geometry and equations should never be combined [399], and therefore _refused to use simple analytical techniques in his proofs_, requiring classical geometric constructions instead [428]. He even made his Principia _deliberately abstruse in order to discourage amateurs from feeling qualified to criticize it_ [459].

[...] most of the rest of his life was spent in administrative work as Master of the Mint and as President of the Royal Society, _a position he ruthlessly exploited in the pursuit of vendettas_ against Hooke (300ff,500), Leibniz (510ff), and Flamsteed (490,500), among others. He kept secret his disbelief in Christ's divinity right up until his dying moment, at which point he refused the last rites, at last openly defying the church (576). [...]

org:junk
people
old-anglo
giants
physics
mechanics
gravity
books
religion
christianity
theos
science
the-trenches
britain
history
early-modern
the-great-west-whale
stories
math
math.CA
nibble
discovery
The Alchemist

In fact, Newton was deeply opposed to the mechanistic conception of the world. A secretive alchemist [...]. His written work on the subject ran to more than a million words, far more than he ever produced on calculus or mechanics [21]. Obsessively religious, he spent years correlating biblical prophecy with historical events [319ff]. He became deeply convinced that Christian doctrine had been deliberately corrupted by _the false notion of the trinity_, and developed a vicious contempt for conventional (trinitarian) Christianity and for Roman Catholicism in particular [324]. [...] He believed that God mediated the gravitational force [511](353), and opposed any attempt to give a mechanistic explanation of chemistry or gravity, since that would diminish the role of God [646]. He consequently conceived such _a hatred of Descartes_, on whose foundations so many of his achievements were built, that at times _he refused even to write his name_ [399,401].

The Man

Newton was rigorously puritanical: when one of his few friends told him "a loose story about a nun", he ended their friendship (267). [...] He thought of himself as the sole inventor of the calculus, and hence the greatest mathematician since the ancients, and left behind a huge corpus of unpublished work, mostly alchemy and biblical exegesis, that he believed future generations would appreciate more than his own (199,511).

[...] Even though these unattractive qualities caused him to waste huge amounts of time and energy in ruthless vendettas against colleagues who in many cases had helped him (see below), they also drove him to the extraordinary achievements for which he is still remembered. And for all his arrogance, Newton's own summary of his life (574) was beautifully humble:

"I do not know how I may appear to the world, but to myself I seem to have been only like a boy, playing on the sea-shore, and diverting myself, in now and then finding a smoother pebble or prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me."

Before Newton

...

1. Calculus. Descartes, in 1637, pioneered the use of coordinates to turn geometric problems into algebraic ones, a method that Newton was never to accept [399]. Descartes, Fermat, and others investigated methods of calculating the tangents to arbitrary curves [28-30]. Kepler, Cavalieri, and others used infinitesimal slices to calculate volumes and areas enclosed by curves [30], but no unified treatment of these problems had yet been found.

2. Mechanics & Planetary motion. The elliptical orbits of the planets having been established by Kepler, Descartes proposed the idea of a purely mechanical heliocentric universe, following deterministic laws, and with no need of any divine agency [15], another anathema to Newton. _No one imagined, however, that a single law might explain both falling bodies and planetary motion_. Galileo invented the concept of inertia, anticipating Newton's first and second laws of motion (293), and Huygens used it to analyze collisions and circular motion [11]. Again, these pieces of progress had not been synthesized into a general method for analyzing forces and motion.

3. Light. Descartes claimed that light was a pressure wave, Gassendi that it was a stream of particles (corpuscles) [13]. As might be guessed, Newton vigorously supported the corpuscular theory. _White light was universally believed to be the pure form_, and colors were some added property bequeathed to it upon reflection from matter (150). Descartes had discovered the sine law of refraction (94), but it was not known that some colors were refracted more than others. The pattern was the familiar one: many pieces of the puzzle were in place, but the overall picture was still unclear.

The Natural Philosopher

Between 1671 and 1690, Newton was to supply definitive treatments of most of these problems. By assiduous experimentation with prisms he established that colored light was actually fundamental, and that it could be recombined to create white light. He did not publish the result for 6 years, by which time it seemed so obvious to him that he found great difficulty in responding patiently to the many misunderstandings and objections with which it met [239ff].

He invented differential and integral calculus in 1665-6, but failed to publish it. Leibniz invented it independently 10 years later, and published it first [718]. This resulted in a priority dispute which degenerated into a feud characterized by extraordinary dishonesty and venom on both sides (542).

In discovering gravitation, Newton was also _barely ahead of the rest of the pack_. Hooke was the first to realize that orbital motion was produced by a centripetal force (268), and in 1679 _he suggested an inverse square law to Newton_ [387]. Halley and Wren came to the same conclusion, and turned to Newton for a proof, which he duly supplied [402]. Newton did not stop there, however. From 1684 to 1687 he worked continuously on a grand synthesis of the whole of mechanics, the "Philosophiae Naturalis Principia Mathematica," in which he developed his three laws of motion and showed in detail that the universal force of gravitation could explain the fall of an apple as well as the precise motions of planets and comets.

The "Principia" crystallized the new conceptions of force and inertia that had gradually been emerging, and marks the beginning of theoretical physics as the mathematical field that we know today. It is not an easy read: Newton had developed the idea that geometry and equations should never be combined [399], and therefore _refused to use simple analytical techniques in his proofs_, requiring classical geometric constructions instead [428]. He even made his Principia _deliberately abstruse in order to discourage amateurs from feeling qualified to criticize it_ [459].

[...] most of the rest of his life was spent in administrative work as Master of the Mint and as President of the Royal Society, _a position he ruthlessly exploited in the pursuit of vendettas_ against Hooke (300ff,500), Leibniz (510ff), and Flamsteed (490,500), among others. He kept secret his disbelief in Christ's divinity right up until his dying moment, at which point he refused the last rites, at last openly defying the church (576). [...]

11 weeks ago by nhaliday

Separating Hyperplane Theorems

august 2017 by nhaliday

also has supporting hyperplane theorems

pdf
lecture-notes
nibble
exposition
caltech
acm
math
math.CA
curvature
optimization
proofs
existence
levers
atoms
yoga
convexity-curvature
august 2017 by nhaliday

Lecture 7: Convex Problems, Separation Theorems

august 2017 by nhaliday

Supporting Hyperplane Theorem

Separating Hyperplane Theorems

pdf
nibble
lectures
slides
exposition
proofs
acm
math
math.CA
optimization
curvature
existence
duality
levers
atoms
yoga
convexity-curvature
Separating Hyperplane Theorems

august 2017 by nhaliday

Subgradients - S. Boyd and L. Vandenberghe

august 2017 by nhaliday

If f is convex and x ∈ int dom f, then ∂f(x) is nonempty and bounded. To establish that ∂f(x) ≠ ∅, we apply the supporting hyperplane theorem to the convex set epi f at the boundary point (x, f(x)), ...

pdf
nibble
lecture-notes
acm
optimization
curvature
math.CA
estimate
linearity
differential
existence
proofs
exposition
atoms
math
marginal
convexity-curvature
august 2017 by nhaliday

Archimedes Palimpsest - Wikipedia

may 2017 by nhaliday

Using this method, Archimedes was able to solve several problems now treated by integral calculus, which was given its modern form in the seventeenth century by Isaac Newton and Gottfried Leibniz. Among those problems were that of calculating the center of gravity of a solid hemisphere, the center of gravity of a frustum of a circular paraboloid, and the area of a region bounded by a parabola and one of its secant lines. (For explicit details, see Archimedes' use of infinitesimals.)

When rigorously proving theorems, Archimedes often used what are now called Riemann sums. In "On the Sphere and Cylinder," he gives upper and lower bounds for the surface area of a sphere by cutting the sphere into sections of equal width. He then bounds the area of each section by the area of an inscribed and circumscribed cone, which he proves have a larger and smaller area correspondingly. He adds the areas of the cones, which is a type of Riemann sum for the area of the sphere considered as a surface of revolution.

But there are two essential differences between Archimedes' method and 19th-century methods:

1. Archimedes did not know about differentiation, so he could not calculate any integrals other than those that came from center-of-mass considerations, by symmetry. While he had a notion of linearity, to find the volume of a sphere he had to balance two figures at the same time; he never figured out how to change variables or integrate by parts.

2. When calculating approximating sums, he imposed the further constraint that the sums provide rigorous upper and lower bounds. This was required because the Greeks lacked algebraic methods that could establish that error terms in an approximation are small.

big-peeps
history
iron-age
mediterranean
the-classics
innovation
discovery
knowledge
math
math.CA
finiteness
the-trenches
wiki
trivia
cocktail
stories
nibble
canon
differential
When rigorously proving theorems, Archimedes often used what are now called Riemann sums. In "On the Sphere and Cylinder," he gives upper and lower bounds for the surface area of a sphere by cutting the sphere into sections of equal width. He then bounds the area of each section by the area of an inscribed and circumscribed cone, which he proves have a larger and smaller area correspondingly. He adds the areas of the cones, which is a type of Riemann sum for the area of the sphere considered as a surface of revolution.

But there are two essential differences between Archimedes' method and 19th-century methods:

1. Archimedes did not know about differentiation, so he could not calculate any integrals other than those that came from center-of-mass considerations, by symmetry. While he had a notion of linearity, to find the volume of a sphere he had to balance two figures at the same time; he never figured out how to change variables or integrate by parts.

2. When calculating approximating sums, he imposed the further constraint that the sums provide rigorous upper and lower bounds. This was required because the Greeks lacked algebraic methods that could establish that error terms in an approximation are small.

may 2017 by nhaliday

Chapter 2: Asymptotic Expansions

april 2017 by nhaliday

includes complementary error function

pdf
nibble
exposition
math
acm
math.CA
approximation
limits
integral
magnitude
AMT
yoga
estimate
lecture-notes
april 2017 by nhaliday

**related tags**

Copy this bookmark: