interpretability   231

« earlier    

Automated and Interpretable Machine Learning - Microsoft Azure - Medium
Automated machine learning is based on a breakthrough from Microsoft’s Research Division. The approach combines ideas from collaborative filtering and Bayesian optimization to search an enormous…
automated  machine-learning  interpretability 
7 hours ago by hschilling
Interpretable Machine Learning
Machine learning algorithms usually operate as black boxes and it is unclear how they derived a certain decision. This book is a guide for practitioners to make machine learning decisions interpretable.
book  machine-learning  machinelearning  interpretability 
5 days ago by duracell999
[1811.10154] Please Stop Explaining Black Box Models for High Stakes Decisions
Black box machine learning models are currently being used for high stakes decision-making throughout society, causing problems throughout healthcare, criminal justice, and in other domains. People have hoped that creating methods for explaining these black box models will alleviate some of these problems, but trying to explain black box models, rather than creating models that are interpretable in the first place, is likely to perpetuate bad practices and can potentially cause catastrophic harm to society. There is a way forward - it is to design models that are inherently interpretable.
black-box  machine-learning  cynthia-rudin  interpretability  via:vielmetti 
12 weeks ago by arsyed
[1101.0891] To Explain or to Predict?
Statistical modeling is a powerful tool for developing and testing theories by way of causal explanation, prediction, and description. In many disciplines there is near-exclusive use of statistical modeling for causal explanation and the assumption that models with high explanatory power are inherently of high predictive power. Conflation between explanation and prediction is common, yet the distinction must be understood for progressing scientific knowledge. While this distinction has been recognized in the philosophy of science, the statistical literature lacks a thorough discussion of the many differences that arise in the process of modeling for an explanatory versus a predictive goal. The purpose of this article is to clarify the distinction between explanatory and predictive modeling, to discuss its sources, and to reveal the practical implications of the distinction to each step in the modeling process.
modeling  modeling-is-not-mathematics  statistics  prediction  interpretability  interestingness  (they-forgot-that-one)  philosophy-of-science  multiobjective-optimization  to-write-about 
march 2019 by Vaguery

« earlier    

related tags

(they-forgot-that-one)  accountability  acmtariat  adversarial  ai-control  ai  algorithms  analytics  armpl  automated  average-case  bias  black-box  book  books  bootstrapping  causal-inference  churn  ci-estimation  class-activation  classification  clever-rats  cnn  cog-psych  cognition  cognitive  complexity  computervision  convnets  counterfactual  cross-validation  cynthia-rudin  data  data_social_justice  dataanalysis  datascience  datasets  datavis  dataviz  debugging  deep-learning  deepgoog  deeplearning  dennett  descriptive  design  ebook  ethics  evaluation  explainable  explainable_ai  explanation  explanations  fairness  fast.ai  fatml  feature-importance  features  feedback-loops  free  future  git  glm  good  google  graphs  hci  health  healthcare  heat-map  human  image-classification  int  intelligence  interaction  interesting  interestingness  interface  interpretibility  iui  knowledge  learning  lime  machine-learning  machine  machine_learning  machinelearning  medicine  ml  model-interpretability  model-selection  model  modeling-is-not-mathematics  modeling  models  multiobjective-optimization  narrative  nasa  nature  neural-net  neuralnetwork  neuralnetworks  neurons  nibble  nips  nn  occlusion  open-closed  open_source  org:bleg  org:mat  org:med  papers  people  philosophy-of-science  prediction  preprint  psychology  race  ratty  reference  reinforecement  replication  reproducibleresearch  research-program  research  researcher  review  risk  rule  science  shap  simplicity  sklearn  slides  social-psych  speedometer  statistics  strategy  stripe  survey  tcav  the-self  theory-of-mind  thesis  tm358  to-write-about  to:am  to:md  tools  tree  trust  truth  tutorials  ui  useatwork  values  vision  visual  visualisation  visualization  watchlist  xai 

Copy this bookmark:



description:


tags: