datascience   18933

« earlier    

(429) https://mobile.twitter.com/i/web/status/998855907978153984
Today we publish our 8 research challenges where we think and can have a GAME CHANGING impact on s…
AI  datascience  from twitter_favs
4 hours ago by tnhh
Basics of Bayesian Decision Theory - Data Science Central
https://www.datasciencecentral.com/profiles/blogs/basics-of-bayesian-decision-theory

Basics of Bayesian Decision Theory
Posted by Kostas Hatalis on March 15, 2018 at 12:00pm View Blog
The use of formal statistical methods to analyse quantitative data in data science has increased considerably over the last few years. One such approach, Bayesian Decision Theory (BDT), also known as Bayesian Hypothesis Testing and Bayesian inference, is a fundamental statistical approach that quantifies the tradeoffs between various decisions using distributions and costs that accompany such decisions. In pattern recognition it is used for designing classifiers making the assumption that the problem is posed in probabilistic terms, and that all of the relevant probability values are known. Generally, we don’t have such perfect information but it is a good place to start when studying machine learning, statistical inference, and detection theory in signal processing. BDT also has many applications in science, engineering, and medicine.

From the perspective of BDT, any kind of probability distribution - such as the distribution for tomorrow's weather - represents a prior distribution. That is, it represents how we expect today the weather is going to be tomorrow. This contrasts with frequentist inference, the classical probability interpretation, where conclusions about an experiment are drawn from a set of repetitions of such experience, each producing statistically independent results. For a frequentist, a probability function would be a simple distribution function with no special meaning.
Bayes  DataScience 
16 hours ago by richardwinter
datasette: Instantly publish structured data to the internet with a JSON API
GitHub is where people build software. More than 27 million people use GitHub to discover, fork, and contribute to over 80 million projects.
python  sqlite  api  consulting  data  datascience  dataviz 
yesterday by gregoltsov

« earlier    

related tags

abdsc  advice  ai  america  analysis  analytics  api  app  article  astronomy  bash  bayes  bestpractices  bigdata  blog  blogs  c  career  city  coding  collaboration  comments  computer  computing  concurrency  consulting  container  cosmos  course  crypto  csv  culture  data  data4dev  dataframe  dataops  datascientists  dataviz  deeplearning  devops  docker  ebook  economics  enem  ethics  excel  fintech  free  golang  graphics  guía  hackernews  history  hn  insurtech  interactive  interesting  intro  ipython  jobs  jupyter  k8s  knowledgegraph  learning  library  machine-learning  machinelearning  management  master  math  ml  mooc  neuralnetworks  nlp  notebook  odsc  onlinetools  opensource  part  philosophy  pipelines  posgradouimp  post  productivity  programming  pycon  pycon2018  python  r  randomforest  reference  repository  research  rlang  rstats  science  scientificcomputing  search  seo  spreadsheet  sql  sqlite  statistical-modeling  statistics  systems  tech  technology  technow  tensorflow  testing  timeseries  toolkit  tools  tutorial  uimp  vector  versioncontrol  video  visualization  website  workshop  wsds2018 

Copy this bookmark:



description:


tags: