correlations   122

« earlier    

Twitter
RT : fun fact 2: Data which only show or with nothing to back it up, mean *nothing*. It…
associations  Tox  correlations  from twitter_favs
july 2019 by stealingsand
A Tale of Two Metrics
August 7, 2017 | | RetailNext | Ray Hartjen, Director, Content Marketing & Public Relations.

Traffic can’t alone measure the effectiveness of demand creation efforts, but some well-placed math can show retailers strong correlations over a myriad of relevant variables. More over, as my colleague Shelley E. Kohan pointed out in her post earlier this summer, “Expanding the Scope of Metrics,” Traffic is foundational for meaningful metrics like Conversion and Sales Yield (Sales per Shopper), key measurements that help managers make daily decisions on the floor from tailoring merchandising displays to allocating staffing and refining associate training.
With metrics, it’s important to remember there’re different strokes for different folks, with different measurements critical for different functions, much like financial accounting and managerial accounting serve different masters. Today’s “big data” age allows retailers to inexpensively collect, synthesize, analyze and report almost unbelievable amounts of data from an equally almost unbelievable number of data streams. Paramount is to get the right information in front of the right people at the right time.
Sometimes, the right data is Sales per Square Foot, and it certainly makes for a nice headline. But, not to be outshined, other instances call for Traffic. As Chitra Balasubramanian, RetailNext’s Head of Business Analytics, points out in the same Sourcing Journal Online article, “Traffic equals opportunity. Retailers should take advantage of store visits with loyalty programs, heightened customer service, and a great in-store experience to create a long-lasting relationship with that customer to ensure repeat visits.”
metrics  sales  foot_traffic  retailers  inexpensive  massive_data_sets  data  creating_demand  correlations  experiential_marketing  in-store  mathematics  loyalty_management  the_right_people  sales_per_square_foot 
august 2017 by jerryking
Mapping Where Torontonians Bike and Run
FEBRUARY 2, 2015 | Torontoist | BY DAVID HAINS

Developers map out the world's most popular spots for walking, jogging, and cycling—and reveal where in this city Torontonians like, and don't like, to get outside and get active.

....the maps show pieces of a larger story. The most popular trails might seem simply like fun places for a run or merely the result of individual choices, but they’re part of a larger context that governs how the city works—how the built and natural environment, a community’s land-use mix, housing affordability, community health options, and other factors affect the way we relate to and use different parts of the city.
mapping  Toronto  running  cycling  ravines  parks  neighbourhoods  community_health  public_policy  correlations  diabetes  health_outcomes  healthy_lifestyles  cardiovascular  land_uses  self-selection 
january 2017 by jerryking

« earlier    

related tags

$kippt_bookmark  '60s  @good_to_internalize  @good_to_reference  @luug  @to_use  a2  a_b_testing  abuse  accenture  achilles’_heel  ad-hoc  addepar  adriancolyer  advil  advisor  ai  albert_gore  algorithm  algorithms  alzheimer's  analtytics  analysis  analytics  anomalies  anticholinergic  antidepressant  antifragility  antihistamine  antimuscarinics  apis  apophenia  arguments  arguments_for  art  as  asking_the_right_questions  asset  association  associations  astrology/  attrition_rates  avpd  awaymsgused  bank_shots  baselines  bay_street  behavioral_change  benadryl  benefit  best_of  bias  big  birth  blogpost  blogs  boards_&_directors_&_governance  book  books  boundary_conditions  brain  breakthroughs  business  cancer  cardiovascular  cash_flows  causality  causation  causations  cause  ceos  challenges  charlie_munger  charts  cheating  cheese  classifications  clinical  code  cognitive_skills  commonalities  community_health  complaints  complexity  conclusions  contextual  contrarians  contrary_to_common_stuff  conventional_wisdom  correlate  correlated  correlation  counterintuitive  creating_demand  creative_renewal  crime  crimes  criminal  cultural_products  cycling  data.modeling  data  data_driven  data_mining  data_quality  data_scientists  database  datatool  david_brooks  debt  decision_making  deep_thinking  delicious  dementia  diabetes  diet  digital_cameras  disappointment  discovery  disease  diseases  double_standards  downward_spirals  drug  earnest  economics  eda  education  edward_tufte  effect  effects  email  emotional_intelligence  emotions  eq  errors  ethics  ethnography  etnul  evidence  evolution  evolutionary  examples  excel  exhaust_data  experiential_marketing  experimental  expertise  extremism  factor  facts  fallacies  fallacy  finance  fintech  first-generation  foot_traffic  forex  freakonomics  freemium  fun  funny  future_of_search  gaming_the_system  geeky  general-hilarity  geographic_sorting  google  googlecorrelate  graph  graphs  great  guff  gui  gun_control  guns  gut_feelings  habits  hard_to_find  haystacks  health  health_outcomes  healthy_lifestyles  heart  hedge_funds  heh  hidden  house  how-to  howto  human  human_resources  humility  humor  humour  hype  ibm  ifttt  illogical  in-store  in  in_the_real_world  incentives  incrementalism  inexpensive  info  infographics  infoliteracy  information  innovation  insights  integrations  interesting  interestingness  investment_custodians  ironic  irreversible  islam  jck  justice_system  kaggle  kill_rates  konrad_yakabuski  land_uses  lbma  libraries  life  life_cycle  lift.do  limitations  line  logic  logical  longitudinal  loyalty_management  m&a  machine_learning  machinelearning  male_violence  mapping  marginal_improvements  market  market_research  market_segmentation  markets  massive_data_sets  masterpieces  math  mathematics  matrix  mckinsey  memes  messiness  metadata  method  methods  metrics  minority  misogyny  mistakes  mobile_apps  modelling  models  mondelez  money_management  month  moonshots  motrin  mrci  multivariate  museums  naivete  narratives  nassim  nassim_taleb  nate_silver  neighbourhoods  new_graduates  new_products  news  noise  nonsense  nosologies  novelty  numeracy  nutrition  objectmenu  octance  octothorpe_software  online_dating  opendata  opensource  opma  optimization  organisms  oversimplification  p.abuse  palantir  paradoxes  parks  particle  pattern  patterns  peer-reviewed  people  pershing_square  personality_disorders  pharmaceutical_industry  physics  pinboard  pirates  platforms  play  pm  police  policing  politics  portfolio_management  portfolios  powerlaw  praise  pre  precrime  predict  prediction  predictive  predictive_analytics  problem_solving  problems  processing  product_development  product_launches  protection  psychology  public  public_policy  pvalues  python  quantified_self  quants  quentin_hardy  queries  questions  r&d  r-project  r  racism  rarity  ratios  ravines  rebuttals  reference  references  regression  religion  render  report  rescuetime  research  retailers  risk  risks  roll_ups  rolling  running  saas  sales  sales_per_square_foot  satire  scatter  science  scientific  search  segmentation  self-deception  self-selection  series  sexual_dynamics  sf  signals  situ  skepticism  sleaze  social_cognition  social_connectivity  social_data  social_dynamics  software  sorting  spearman  spuriosities  spurious  statestats  statistical  statistics  stats  steven_levitt  students  studies  surprises  swarm  symptoms  table  taleb  talent  taxonomy  terrorism  test_beds  the_human_condition  the_right_people  theft  theoretical  think_differently  think_threes  thinking  time-based  time-series  time  timeseriesanalysis  tools  topics  toronto  tox  trading-systems  trading  training_beds  trends  trial  tricyclic  turbulence  twitter  tylenol  tylervigen  unfamiliarity  unrelated  us  valeant  valuations  value_judgements  value_propositions  variables  video  violence  visualization  vivo  warren_buffett  watson  wealth_management  web_apps  white-collar_crime  white_men  white_supremacy  wikis  william_ackman 

Copy this bookmark:



description:


tags: