big_data   4062

« earlier    

Are You Setting Your Data Scientists Up to Fail?
First, think through how you want data scientists to contribute
Second, immerse data scientists in your business
Third, obsess on quality, professionalism, and business results
Finally, encourage data scientists to “pull on a thread.” A thread is something that looks out of place in the data.

"top 10 skills for a data scientist include machine learning, R, Python, data mining, data analysis, data science, SQL, MatLab, big data, and statistical modeling
big_data  data_science 
29 days ago by tom.reeder
Deep Learning - The mostly complete chart of Neural Networks, explained
The zoo of neural network types grows exponentially. One needs a map to navigate between many emerging architectures and approaches. Fortunately, Fjodor van Veen from Asimov institute compiled a…
ML  deep_learning  analytics  big_data  data_science 
5 weeks ago by dkfinancial
Up to Speed on Deep Learning: September, Part 2 and October, Part 1
Continuing our series of deep learning updates, we pulled together some of the awesome resources that have emerged since our last post on September 20th. In case you missed it, here are our past…
ML  deep_learning  analytics  data_science  big_data 
5 weeks ago by dkfinancial
De l’automatisation des inégalités |
Dans une récente  tribune pour le New York Times, lavocate Elisabeth Mason (@elismason1), directrice du Laboratoire pauvreté et technologie qui ...
lang:fr  inequalities  big_data  politics  ethics  neutrality  algorithms 
5 weeks ago by vloux
Data Concentration In Platforms - A Modest Proposal - John Battelle's Search Blog
Over the past few years I’ve been looking for a grand unifying theory that explains my growing discomfort with technology, an industry for which I’ve been a mostly unabashed cheerleader these past three decades.
I think it all comes down to how our society manages its most crucial new resource: Data.
That our largest technology companies have cornered the market on the data that powers our society’s most important functions is not in question. Who better than Amazon understands at-scale patterns in commerce (and with AWS, our demand for compute-related resources)? Who better than Google understands what products, services, and knowledge we want, and our path to finding them? Who better than Facebook understands our relationships to others and our interaction with (often bad) ideas? And who better than Apple (and Google) understand the applications, services, and entertainment we choose to engage with every day (not to mention our location, our ID, our most personal data, and on and on)?
These companies also dominate two crucial assets related to data: The compute power necessary to translate data into actionable insights, and the human talent required to leverage them both. Taken together, these three assets — massive amounts of data, massive compute platforms, and legions of highly trained engineers and data scientists — represent our society’s best path to understanding itself, and thereby improving all of our lives.
data  big_data  privacy  security  business  gov2.0  politics 
6 weeks ago by rgl7194
Data Concentration In Platforms – A Modest Proposal
John Batelle writes about data and compute concentration in the tech sector...
Other than his overuse of em dashes, I really love this review from someone that knows what they are talking about.
For professional and personal reasons I've been spending a lot more time familiarizing myself with Amazon technologies. It's damn impressive and at some level scary. The average person has no idea how advanced this technology is and how much data can be scooped up and processed with little effort. But as Batelle points out, it's not being used for public good in ways that it could be....
Data is the future of politics, society, and human rights, yet our political organizations are stuck mostly in the past and denying that any of this is important. As net neutrality dies, most administration boot-lickers are dismissing that anything out of the ordinary is happening.
data  big_data  privacy  security  business  gov2.0  net_neutrality  amazon  politics 
6 weeks ago by rgl7194

« earlier    

related tags

%tech_bz↗  ?  *_herramientas  administrative_state  agriculture  ai  algorithms  algoritmer  amazon  analysis  analytics  anonymization  artificial_intelligence  automation  berkeley  bi  bias  bigdata  bigquery  biometrics  book  bookmarks_bar  bureaucracy  business  capitalism  challenge  china  cities  civil_rights  coding  coe  collaboration  company  conferences  constitutions  consumer_protection  contagion  copernicus  course  courses  critical_theory  criticism  critique  culture  data  data_brokers  data_fusion  data_literacy  data_science  database  datastores  dating  db  deep_learning  digital_economy  digital_scholarship  distributed  distributed_systems  dystopia  ecl  econometrics  economic_geography  economics  epistemology  estonia  ethical_ai  ethics  etl  european_commission  experiments  fintech  food_chain  for_friends  france  free  freedom_of_speech  gafa  generative  geography  germany  google  gov2.0  governance  gpu  h2020  hadoop  hardware  hcds  hdfs  health  history  history_of_science  homophily  hpcc  human_trafficking  ibm  ideas  identity  incubator  inequalities  inequality  influencer  information  intellectual_property  internet  intervention  jobs  journalism  labor  lang:fr  law  learn  learning  leiden  linked_data_project  machine-learning  machine_learning  market_microstructure  market_research  measurement  methodology  metrics  microeconomics  microsoft  ml  modelling  nap  net_neutrality  networked_public_sphere  networks  neutrality  new_media  nonprofit  nutch  nytimes  observational_studies  online_experiments  open_data  opendata  opensource  opt-out  optimization  pedagogy  performance  personal_information  philosophy_of_technology  phobia  policing  political_economy  political_psychology  political_science  political_sociology  politics  postgresql  privacy  programming  propublica  public_administration  public_goods  public_policy  public_sphere  python  quantification  quantified_self  r  raj.chetty  rdf  regulation  report  research  risc_v  scalability  science  search  security  semanticweb  sharing  slavery  social_media  social_networks  social_reputation  social_science  social_score  sociology_of_technology  solr  spark  sparql  spatial_statistics  startup  startups  statistics  strategy  streaming  sts  supply_chain  surveillance  syllabus  t_subject  teaching  technology  ted_talks  tensorflow  testing  the_guardian  thinker  transparency  transportation  united_states_of_america  urban  us_elections  us_politics  versioning  voter_supression_complex  wapo  wealth  white_paper  wired  yahoo 

Copy this bookmark: