biases   697

« earlier    

“Give Anything” | An Algorithmic Lucidity
As a freshman on my high school's cross country team, our captain told me that to be a good runner, you needed to love pain.

I objected: a great runner could love to race, I said, and endure the pain only for the sake of competing and winning.

It's only fifteen years later (practically one foot in the grave), that I now see that I was wrong and he was right.
ratty  techtariat  aphorism  running  fitness  stoic  impetus  ends-means  biases  emotion  endurance 
18 days ago by nhaliday
The robot-proof skills that give women an edge in the age of AI
February 11, 2019 | Financial Times |by Sarah O’Connor.

in a world of algorithms and artificial intelligence, communication skills and emotional intelligence — traditionally seen as female strengths — could prove key.

The latest panic about artificial intelligence is that it will deal a blow to women in the workplace..... The concerns are legitimate enough, but they fail to appreciate the big ways in which the world of work is going to change. In fact, it is quite possible the age of AI will belong to women. Men are the ones in danger of being left behind....Some AI tools may be biased against women — a risk for any group that has been historically under-represented in the workplace. Because machine learning tends to learn from historical data, it can perpetuate patterns from the past into the future......It is right to pay attention to these problems and work on solutions. Algorithms shouldn’t be given power without transparency, accountability, and human checks and balances. Top AI jobs should be held by a more diverse set of smart people.....As machines become better at many cognitive tasks, it is likely that the skills they are relatively bad at will become more valuable. This list includes creative problem-solving, empathy, negotiation and persuasion. As Andy Haldane, chief economist at the Bank of England, has put it, “the high-skill, high-pay jobs of the future may involve skills better measured by EQs (a measure of emotional intelligence) than IQs”..... increasing demand in these jobs for supplementary skills such as emotional intelligence, which has given women an edge.....as the AI era dawns, it is the right moment to overhaul the way we value these skills, and the way we teach them. With an eye on the demands of the future, we are trying to persuade girls that coding is not just for boys. So why aren’t we also trying to persuade boys that empathy is not just for girls?

We could start by changing the language we use. For too long we have talked about “soft skills”, with connotations of femininity and a lack of rigour. Let’s call them what they are: “robot-proof skills” that neither men nor women can afford to face the 21st century
21st._century  algorithms  artificial_intelligence  biases  checks_and_balances  dark_side  emotional_intelligence  EQ  future-proofing  gender_gap  machine_learning  soft_skills  smart_people  under-representation  women  workplaces  pay_attention 
5 weeks ago by jerryking
Roger McNamee on how to tame Big Tech
February 7, 2019 | Financial Times | Roger McNamee.

Government intervention of this kind is a first step on the path to resolving the privacy issues that result from the architecture, business models and culture of internet platforms. But privacy is not the only problem we must confront. Internet platforms are transforming our economy and culture in unprecedented ways. We do not even have a vocabulary to describe this transformation, which complicates the challenge facing policymakers....Google, Facebook and other internet platforms use data to influence or manipulate users in ways that create economic value for the platform, but not necessarily for the users themselves. In the context of these platforms, users are not the customer. They are not even the product. They are more like fuel.....Google, Facebook and the rest now have economic power on the scale of early 20th-century monopolists such as Standard Oil. What is unprecedented is the political power that internet platforms have amassed — power that they exercise with no accountability or oversight, and seemingly without being aware of their responsibility to society......When capitalism functions properly, government sets and enforces the rules under which businesses and citizens must operate. Today, however, corpor­ations have usurped this role. Code and algorithms have replaced the legal system as the limiter on behaviour. Corporations such as Google and Facebook behave as if they are not accountable to anyone. Google’s seeming disdain for regulation by the EU and Facebook’s violations of the spirit of its agreement with the US FTC over user consent are cases in point......AI promises to be revolutionary. That said, it will not necessarily be a force for good. The problem is the people who create AI. They are human...McNamee recommends two areas of emphasis: regulation and innovation. As for the former, the most important requirement is to create and enforce standards that require new technology to serve the needs of those who use it and society as a whole. ...... The IoT requires our approval. Do not give it until vendors behave responsibly. Demand that policymakers take action to protect public health, democracy, privacy, innovation and the economy.
accountability  Alexa  antitrust  artificial_intelligence  biases  Big_Tech  consent  dark_side  Facebook  Google  Industrial_Internet  monopolies  personal_data  platforms  political_power  privacy  Roger_McNamee  sensors  surveillance  unintended_consequences 
6 weeks ago by jerryking
Amazon offers cautionary tale of AI-assisted hiring
January 23, 2019 | Financial Times | by Andrew Hill.

the task of working out how to get the right people on the bus has got harder since 2001 when Jim Collins first framed it, as it has become clearer — and more research has underlined — that diverse teams are better at innovation. For good reasons of equity and fairness, the quest for greater balance in business has focused on gender, race and background. But these are merely proxies for a more useful measure of difference that is much harder to assess, let alone hire for: cognitive diversity. Might this knotty problem be solved with the help of AI and machine learning? Ming is sceptical. As she points out, most problems with technology are not technology problems, but human problems. Since humans inevitably inherit cultural biases, it is impossible to build an “unbiased AI” for hiring. “You simply have to recognise that the biases exist and put in the effort to do more than those default systems point you towards,” she says...........What Amazon’s experience suggests is that instead of sending bots to crawl over candidates’ past achievements, companies should be exploring ways in which computers can help them to assess and develop the long term potential of the people they invite to board the bus. Recruiters should ask, in Ming’s words, “Who will [these prospective candidates] be three years from now when they’re at their peak productivity inside the company? And that might be a very different story than who will deliver peak productivity the moment they walk in the door.”
heterogeneity  Amazon  artificial_intelligence  hiring  Jim_Collins  machine_learning  recruiting  teams  Vivienne_Ming  cautionary_tales  biases  diversity  intellectual_diversity  algorithms  questions  the_right_people 
8 weeks ago by jerryking
Kahneman’s optimistic view of the mind | Jason Collins blog
Kahneman does view the mind positively. Perhaps a hint that training System 2 to be faster is possible?
kahneman  psychology  cognitive  heuristics  biases 
8 weeks ago by shadowsun7
Twitter
change the way that we recall past events. The peak-end rule focuses our memories around the mos…
Cognitive  biases  from twitter_favs
11 weeks ago by schraeds

« earlier    

related tags

'60s  ***  **  1968  200  2018  21st._century  absolute-relative  academia  accountability  achievement_gaps  admissions  advice  aeon  affirmative_action  african-americans  age-generation  aggregator  aging  ai-control  ai  alexa  algorithms  alignment  alumni  amazon  amplifying  analogy  analysis  analytical-holistic  analytics  anthropology  antitrust  aphorism  apollonian-dionysian  are  art  article  artificial  artificial_intelligence  asian-americans  assortative-mating  assumptions  atlantic  autism  automation  availability_bias  backlash  baked  base_rates  behavior  behavioral-econ  behavioral-gen  behavioral  behaviour  behavioural  being  bias  big-peeps  big.data  big_tech  bigdata  biodet  black_is_beautiful  black_liberation_movement  black_nationalism  black_pride  blackness  blind_spots  blindsided  blog  book  books  boring  bounded-cognition  britain  business  can  capitalism  cardio  care  caretaking  cathy_o’neil  causation  cautionary_tales  censorship  certainty  chart  cheating  checks_and_balances  civil-liberty  class-warfare  class  climatechange  coalitions  cocktail  cog-psych  cognition  cognitive  cognitivebiases  college-educated  colleges_&_universities  collusion  colorism  commentary  communications  communism  comparison  compensation  competition  concept  conceptual-vocab  confirmation.bias  confirmation_bias  consent  cooperate-defect  coordination  core-rats  core_values  correlation  corruption  cost-benefit  cost-disease  counter-arguments  cracker-econ  creative  cultural-dynamics  cybernetics  danariely  daniel_kahneman  danielkahneman  dark-arts  dark_side  data  data_driven  decision-making  decision-theory  decision  decision_making  decisionmaking  decisions  deep-materialism  deepgoog  democracy  dennett  descriptive  design  developing_countries  developmental  devil’s_advocates  direct-indirect  discrimination  discussion  dishonesty  diversity  drugs  dunning-kruger  economics  econotariat  eda  education  eea  effects  egalitarianism-hierarchy  ego  elite  elitism  emotion  emotional_intelligence  empirical  endogenous-exogenous  ends-means  endurance  enron  entrepreneurship  envy  epistemic  eq  equilibrium  error  essay  ethics  ethnic_communities  ethnic_stereotyping  eu  europe  evidence  evolution  evolutionarypsychology  evopsych  expectancy  expectations  exploration  extrema  facebook  fail  failure  fairness  fallacies  faq  farewells  farmers-and-foragers  feminism  feynman  field-study  finance  financial_advisors  fitness  fix  flux-stasis  for  foreign-lang  formal-values  forms-instances  ftc  future-proofing  futurism  game_theory  gender  gender_gap  genetics  genomics  getrichslowly  giants  gigo  gillian_tett  gnxp  google  gotchas  government  gradient-descent  gwern  habit  habits  hanson  happy-sad  hard_questions  hari-seldon  harvard  health  healthcare  help  heterogeneity  heuristic  heuristics  hidden-motives  high_schools  higher-ed  hiring  history  hits  hn-comments  hn  honesty  howto  human  humanbehavior  humanity  humans  hypocrisy  ideology  illusion  imgur  imperfections  impetus  important  industrial-org  industrial_internet  inequality  info-dynamics  info-foraging  infographic  infographics  inhibition  init  innovation  insight  instead  instinct  intellectual_diversity  intelligence  interests  interview  into  intricacy  intuition  investing  investors  iq  iron-age  irrationality  is-ought  ivy_league  james_brown  janus  jargon  jim_collins  joblessness  kahneman  knowledge  labor  law  lawsuits  leadership  learning  left-wing  lens  lessons_learned  lesswrong  letters  leviathan  lies  limitations  links  literature  local-global  logic  lol  long-term  low-income  luck  machine-learning  machine.learning  machine_learning  management  manifolds  map-territory  marginal-rev  marginal  market-power  markets  mass_incarceration  massive_data_sets  math  meaningness  measurement  mechanics  medicine  medieval  mediterranean  mena  mental-models  meritocratic  meta-analysis  meta:medicine  metabuch  metameta  metaphor  methodology  metrics  miri-cfar  missing-heritability  mistakes  ml  models  moments  money  monopolies  morality  motivations  multi  music  mutation  mxm  nature  negritude  neurons  neuroscience  new_york_city  news  newsletter  nibble  nimbleness  no.fucking.shit  nonlinearity  north-weingast-like  obituaries  of  offline  old-anglo  open-closed  open_mind  optimization  optionality  order-disorder  org:mag  organizations  organizing  outcome-risk  overconfidence  ownership  parallax  pay_attention  pc  pdf  personal_data  personal_finance  persuasion  phds  philopoli  philosophy  physics  pinker  piracy  pittsburgh  planning  platforms  plots  polanyi-marx  policy  polisci  political-econ  political_power  politics  poll  pop-structure  popsci  posters  poverty  prediction  prejudice  present_bias  presentation  pretense_of_knowledge  principleofthedean  privacy  pro-rata  probabilities  problem-solving  process  procrastination  product  professional_issues  professional_skills  professors  profile  property  psychology  psychometrics  q-n-a  questions  quotes  race-blind  race-conscious  race  racial_discrimination  racial_disparities  racism  random  randy-ayndy  ranking  rant  rationality  ratty  realness  reason  recruiting  red_teams  redistribution  reference  reflection  regularizer  regulation  regulators  rent-seeking  replication  research  resilience  resources  resumes  retention  retirement  right-wing  risk  ritual  rituals  rng  robust  roger_mcnamee  roots  rot  rules  running  s-factor  sampling-bias  sapiens  science  scitariat  screening  search  selection  selection_processes  self-acceptance  self-delusions  self-hatred  self-identification  self-interest  self-sabotage  sensors  sentiment  shadism  shift  sib-study  slides  smart_people  snapchat  social-psych  social-science  sociologists  sociology  soft_skills  songs  soul  spike_lee  ssc  stackex  state-of-art  statistics  status  stereotypes  stoic  stream  students  study  stylized-facts  subcontracting  subculture  subjective-objective  successdaily  summary  surveillance  tainter  teaching  teams  techtariat  telos-atelos  test  testing  text  the-classics  the-self  the-west  the  the_right_people  them?  theory-of-mind  thinking  tim_harford  to:read  tools  top-n  track-record  tradeoffs  training.data  transgendered  transparency  tribalism  trivia  troll  truth  tutoring  twin-study  unbiased  under-representation  unintended-consequences  unintended_consequences  universalism-particularism  us-them  usa  user-experience  ux  value_judgements  values  variance-components  videos  visioning  vivienne_ming  war  wealth  west-hunter  westminster  white-collar  white_supremacy  wiki  wire-guided  within-without  women  word2vec  workplaces  worst-case  writing  ww_ii  yvain  zeitgeist  🌞  👽 

Copy this bookmark:



description:


tags: